Limits...
Mind the gap: an attempt to bridge computational and neuroscientific approaches to study creativity.

Wiggins GA, Bhattacharya J - Front Hum Neurosci (2014)

Bottom Line: Next we propose a neurocognitive architecture of creativity with a strong focus on various facets (i.e., unconscious thought theory, mind wandering, spontaneous brain states) of un/pre-conscious brain responses.Our principal argument is that pre-conscious creativity happens prior to conscious creativity and the proposed computational model may provide a mechanism by which this transition is managed.This integrative approach, albeit unconventional, will hopefully stimulate future neuroscientific studies of the inscrutable phenomenon of creativity.

View Article: PubMed Central - PubMed

Affiliation: Computational Creativity Laboratory, School of Electronic Engineering and Computer Science, Queen Mary, University of London London, UK.

ABSTRACT
Creativity is the hallmark of human cognition and is behind every innovation, scientific discovery, piece of music, artwork, and idea that have shaped our lives, from ancient times till today. Yet scientific understanding of creative processes is quite limited, mostly due to the traditional belief that considers creativity as a mysterious puzzle, a paradox, defying empirical enquiry. Recently, there has been an increasing interest in revealing the neural correlates of human creativity. Though many of these studies, pioneering in nature, help demystification of creativity, but the field is still dominated by popular beliefs in associating creativity with "right brain thinking", "divergent thinking", "altered states" and so on (Dietrich and Kanso, 2010). In this article, we discuss a computational framework for creativity based on Baars' Global Workspace Theory (GWT; Baars, 1988) enhanced with mechanisms based on information theory. Next we propose a neurocognitive architecture of creativity with a strong focus on various facets (i.e., unconscious thought theory, mind wandering, spontaneous brain states) of un/pre-conscious brain responses. Our principal argument is that pre-conscious creativity happens prior to conscious creativity and the proposed computational model may provide a mechanism by which this transition is managed. This integrative approach, albeit unconventional, will hopefully stimulate future neuroscientific studies of the inscrutable phenomenon of creativity.

No MeSH data available.


Illustration of Baars’ threshold paradox. Generators operate on perceptual input and associative memory. In order to reach into the level of consciousness, a coalition of generators needs to be formed and this is possible only via the Global Workspace. However, before it can be made possible, support from the generators that are to be recruited are needed, and therein lies the paradox.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109440&req=5

Figure 1: Illustration of Baars’ threshold paradox. Generators operate on perceptual input and associative memory. In order to reach into the level of consciousness, a coalition of generators needs to be formed and this is possible only via the Global Workspace. However, before it can be made possible, support from the generators that are to be recruited are needed, and therein lies the paradox.

Mentions: Baars (1988, pp. 98–99) also addresses what he acknowledges is a problem for his theory. He proposes a threshold for input access to the Global Workspace, crossing of which is thought of in terms of “recruiting” sufficient generators to produce information that is somehow coordinated, or synchronized between them. However, in terms of the Global Workspace alone, there is no means of doing this: generators can only be coordinated (whatever that means) via the Global Workspace, and so the generators are faced with a classic Catch 22 situation. This form of the Workspace is illustrated in Figure 1. Baars presents two possible solutions to this paradox, but both are somewhat incomplete, therefore causing a gap in the theory. Our approach presents a possible solution, and simultaneously accounts for the “Aha!” moment.


Mind the gap: an attempt to bridge computational and neuroscientific approaches to study creativity.

Wiggins GA, Bhattacharya J - Front Hum Neurosci (2014)

Illustration of Baars’ threshold paradox. Generators operate on perceptual input and associative memory. In order to reach into the level of consciousness, a coalition of generators needs to be formed and this is possible only via the Global Workspace. However, before it can be made possible, support from the generators that are to be recruited are needed, and therein lies the paradox.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109440&req=5

Figure 1: Illustration of Baars’ threshold paradox. Generators operate on perceptual input and associative memory. In order to reach into the level of consciousness, a coalition of generators needs to be formed and this is possible only via the Global Workspace. However, before it can be made possible, support from the generators that are to be recruited are needed, and therein lies the paradox.
Mentions: Baars (1988, pp. 98–99) also addresses what he acknowledges is a problem for his theory. He proposes a threshold for input access to the Global Workspace, crossing of which is thought of in terms of “recruiting” sufficient generators to produce information that is somehow coordinated, or synchronized between them. However, in terms of the Global Workspace alone, there is no means of doing this: generators can only be coordinated (whatever that means) via the Global Workspace, and so the generators are faced with a classic Catch 22 situation. This form of the Workspace is illustrated in Figure 1. Baars presents two possible solutions to this paradox, but both are somewhat incomplete, therefore causing a gap in the theory. Our approach presents a possible solution, and simultaneously accounts for the “Aha!” moment.

Bottom Line: Next we propose a neurocognitive architecture of creativity with a strong focus on various facets (i.e., unconscious thought theory, mind wandering, spontaneous brain states) of un/pre-conscious brain responses.Our principal argument is that pre-conscious creativity happens prior to conscious creativity and the proposed computational model may provide a mechanism by which this transition is managed.This integrative approach, albeit unconventional, will hopefully stimulate future neuroscientific studies of the inscrutable phenomenon of creativity.

View Article: PubMed Central - PubMed

Affiliation: Computational Creativity Laboratory, School of Electronic Engineering and Computer Science, Queen Mary, University of London London, UK.

ABSTRACT
Creativity is the hallmark of human cognition and is behind every innovation, scientific discovery, piece of music, artwork, and idea that have shaped our lives, from ancient times till today. Yet scientific understanding of creative processes is quite limited, mostly due to the traditional belief that considers creativity as a mysterious puzzle, a paradox, defying empirical enquiry. Recently, there has been an increasing interest in revealing the neural correlates of human creativity. Though many of these studies, pioneering in nature, help demystification of creativity, but the field is still dominated by popular beliefs in associating creativity with "right brain thinking", "divergent thinking", "altered states" and so on (Dietrich and Kanso, 2010). In this article, we discuss a computational framework for creativity based on Baars' Global Workspace Theory (GWT; Baars, 1988) enhanced with mechanisms based on information theory. Next we propose a neurocognitive architecture of creativity with a strong focus on various facets (i.e., unconscious thought theory, mind wandering, spontaneous brain states) of un/pre-conscious brain responses. Our principal argument is that pre-conscious creativity happens prior to conscious creativity and the proposed computational model may provide a mechanism by which this transition is managed. This integrative approach, albeit unconventional, will hopefully stimulate future neuroscientific studies of the inscrutable phenomenon of creativity.

No MeSH data available.