Limits...
Potential use of halophytes to remediate saline soils.

Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MN, Ozturk M, Fujita M - Biomed Res Int (2014)

Bottom Line: The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems.Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level.Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well.

View Article: PubMed Central - PubMed

Affiliation: Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.

ABSTRACT
Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

Show MeSH

Related in: MedlinePlus

Cross section of a salt gland [3] with permission from Springer.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109415&req=5

fig5: Cross section of a salt gland [3] with permission from Springer.

Mentions: Among several special characteristics related to the physiological adaptation of halophytes, salt excretion is one of the most efficient mechanisms that prevent excessive concentrations of salts building up in photosynthetic tissues [3]. Some of the halophytes possess multicellular salt glands and salt hairs; those are common in many halophytes such as Cressa (Convolvulaceae), Frankenia (Frankeniaceae), Spartina, Chloris, and Aeluropus (Poaceae), Atriplex (Chenopodiaceae), Statice, Limonium, Plumbago, and Armeria (Plumbaginaceae), Glaux (Primulaceae), Tamarix and Reamuria (Tamaricaceae), and some mangrove species, for example, Avicennia, Aegialitis, Aegiceras, and Acanthus [3]. These glands are composed of a set of epidermal cells complexes; those capture salt from the mesophyll cells beneath them, to which they are connected by numerous plasmodesmata, and secrete it at the leaf surface, where a layer of salt crystals is formed ([3]; Figure 5). The process of salt excretion by salt gland is yet to be elucidated by some researchers; however, one of the requisites is the availability of energy (ATP) which is required for ion pumping. In halophytes, this energy is provided by the active respiration of the glandular cells [44].


Potential use of halophytes to remediate saline soils.

Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MN, Ozturk M, Fujita M - Biomed Res Int (2014)

Cross section of a salt gland [3] with permission from Springer.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109415&req=5

fig5: Cross section of a salt gland [3] with permission from Springer.
Mentions: Among several special characteristics related to the physiological adaptation of halophytes, salt excretion is one of the most efficient mechanisms that prevent excessive concentrations of salts building up in photosynthetic tissues [3]. Some of the halophytes possess multicellular salt glands and salt hairs; those are common in many halophytes such as Cressa (Convolvulaceae), Frankenia (Frankeniaceae), Spartina, Chloris, and Aeluropus (Poaceae), Atriplex (Chenopodiaceae), Statice, Limonium, Plumbago, and Armeria (Plumbaginaceae), Glaux (Primulaceae), Tamarix and Reamuria (Tamaricaceae), and some mangrove species, for example, Avicennia, Aegialitis, Aegiceras, and Acanthus [3]. These glands are composed of a set of epidermal cells complexes; those capture salt from the mesophyll cells beneath them, to which they are connected by numerous plasmodesmata, and secrete it at the leaf surface, where a layer of salt crystals is formed ([3]; Figure 5). The process of salt excretion by salt gland is yet to be elucidated by some researchers; however, one of the requisites is the availability of energy (ATP) which is required for ion pumping. In halophytes, this energy is provided by the active respiration of the glandular cells [44].

Bottom Line: The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems.Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level.Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well.

View Article: PubMed Central - PubMed

Affiliation: Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.

ABSTRACT
Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

Show MeSH
Related in: MedlinePlus