Limits...
Feasibility study of a hand guided robotic drill for cochleostomy.

Brett P, Du X, Zoka-Assadi M, Coulson C, Reid A, Proops D - Biomed Res Int (2014)

Bottom Line: The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator.The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory.This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced.

View Article: PubMed Central - PubMed

Affiliation: Brunel Institute for Bioengineering, Brunel University, London UB8 3PH, UK.

ABSTRACT
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

Show MeSH
Contrasting force transients between the hand guided and automatically actuated drill in the laboratory.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109386&req=5

fig11: Contrasting force transients between the hand guided and automatically actuated drill in the laboratory.

Mentions: Figure 11 provides contrast between reactive forces transients of hand guided and automated arm supported drill when drilling in the laboratory. As would be expected, the amplitude of disturbances is significantly greater for the hand guided system as opposed to the arm supported system since the stiffness of the drill unit in the feed direction is similar and the system is subject to involuntary operator disturbances. In the real operating environment both systems will be subjected to patient disturbances of similar and even greater disturbance amplitude [12]. The figure shows that peak feed force values are similar. There is a difference in operation between the two systems; the arm supported drill begins with a lower peak whereas the initial force peak under operator guidance is greater to reinforce stability. The hand guided system guides the operator toward a constant value of feed force whereas the automatic system increases over the period shown. The feed force is limited when using the automatic arm supported drill; however in the test result shown the force limit had not been reached. These results indicate the need to adjust compliance for the hand guided system and to achieve the compromise that will attenuate operator induced disturbances while maintaining stability.


Feasibility study of a hand guided robotic drill for cochleostomy.

Brett P, Du X, Zoka-Assadi M, Coulson C, Reid A, Proops D - Biomed Res Int (2014)

Contrasting force transients between the hand guided and automatically actuated drill in the laboratory.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109386&req=5

fig11: Contrasting force transients between the hand guided and automatically actuated drill in the laboratory.
Mentions: Figure 11 provides contrast between reactive forces transients of hand guided and automated arm supported drill when drilling in the laboratory. As would be expected, the amplitude of disturbances is significantly greater for the hand guided system as opposed to the arm supported system since the stiffness of the drill unit in the feed direction is similar and the system is subject to involuntary operator disturbances. In the real operating environment both systems will be subjected to patient disturbances of similar and even greater disturbance amplitude [12]. The figure shows that peak feed force values are similar. There is a difference in operation between the two systems; the arm supported drill begins with a lower peak whereas the initial force peak under operator guidance is greater to reinforce stability. The hand guided system guides the operator toward a constant value of feed force whereas the automatic system increases over the period shown. The feed force is limited when using the automatic arm supported drill; however in the test result shown the force limit had not been reached. These results indicate the need to adjust compliance for the hand guided system and to achieve the compromise that will attenuate operator induced disturbances while maintaining stability.

Bottom Line: The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator.The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory.This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced.

View Article: PubMed Central - PubMed

Affiliation: Brunel Institute for Bioengineering, Brunel University, London UB8 3PH, UK.

ABSTRACT
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

Show MeSH