Limits...
Feasibility study of a hand guided robotic drill for cochleostomy.

Brett P, Du X, Zoka-Assadi M, Coulson C, Reid A, Proops D - Biomed Res Int (2014)

Bottom Line: The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator.The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory.This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced.

View Article: PubMed Central - PubMed

Affiliation: Brunel Institute for Bioengineering, Brunel University, London UB8 3PH, UK.

ABSTRACT
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

Show MeSH
Completed hole and corresponding disturbance velocity transients [14].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109386&req=5

fig5: Completed hole and corresponding disturbance velocity transients [14].

Mentions: Figure 5 shows an example of a completed hole and the corresponding disturbance velocity transients applied to the arm. Peak amplitude is 20 mm/s. The corresponding hole shown in Figure 5 is through the shell of a raw egg, a phantom for the cochlea, which is typical of many trials [10]. The figure shows that the tissue of the shell has been removed to expose a window onto the membrane of a diameter required for electrode insertion. The process of controlled knocking has not confused the system and the task has been accomplished without being disturbed. This shows that the sensing scheme of the drill offers robustness to environmental disturbances. The tolerance to disturbances also suggests tolerance to a variety of operator disturbances when guided by hand. The results from the current investigation on operator disturbance levels are not complete at this time and will affect the design of the drill unit.


Feasibility study of a hand guided robotic drill for cochleostomy.

Brett P, Du X, Zoka-Assadi M, Coulson C, Reid A, Proops D - Biomed Res Int (2014)

Completed hole and corresponding disturbance velocity transients [14].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109386&req=5

fig5: Completed hole and corresponding disturbance velocity transients [14].
Mentions: Figure 5 shows an example of a completed hole and the corresponding disturbance velocity transients applied to the arm. Peak amplitude is 20 mm/s. The corresponding hole shown in Figure 5 is through the shell of a raw egg, a phantom for the cochlea, which is typical of many trials [10]. The figure shows that the tissue of the shell has been removed to expose a window onto the membrane of a diameter required for electrode insertion. The process of controlled knocking has not confused the system and the task has been accomplished without being disturbed. This shows that the sensing scheme of the drill offers robustness to environmental disturbances. The tolerance to disturbances also suggests tolerance to a variety of operator disturbances when guided by hand. The results from the current investigation on operator disturbance levels are not complete at this time and will affect the design of the drill unit.

Bottom Line: The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator.The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory.This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced.

View Article: PubMed Central - PubMed

Affiliation: Brunel Institute for Bioengineering, Brunel University, London UB8 3PH, UK.

ABSTRACT
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

Show MeSH