Limits...
Feasibility study of a hand guided robotic drill for cochleostomy.

Brett P, Du X, Zoka-Assadi M, Coulson C, Reid A, Proops D - Biomed Res Int (2014)

Bottom Line: The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator.The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory.This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced.

View Article: PubMed Central - PubMed

Affiliation: Brunel Institute for Bioengineering, Brunel University, London UB8 3PH, UK.

ABSTRACT
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

Show MeSH
The surgical robot drilling system used in cochleostomy supported on a fixed flexilock arm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109386&req=5

fig1: The surgical robot drilling system used in cochleostomy supported on a fixed flexilock arm.

Mentions: The system consists of linear and rotational drives to feed and rotate standard surgical burrs. Currently the drill unit is attached to a flex-lock arm, permitting free movement to align the drill on the desired trajectory and then stabilization of the drill when drilling (Figure 1). Sensing through a discriminatory process of coupled features, feed force and torque transients enable perception of the critical phenomena of the tool working environment. Anticipation of conditions ahead of the tool before they are encountered enables discrimination of the approach to the critical endosteal membrane interface before it is reached. The drilling robot is able to autonomously adjust motion strategy with respect to the deforming tissues and achieve a consistent state in the result [11, 12].


Feasibility study of a hand guided robotic drill for cochleostomy.

Brett P, Du X, Zoka-Assadi M, Coulson C, Reid A, Proops D - Biomed Res Int (2014)

The surgical robot drilling system used in cochleostomy supported on a fixed flexilock arm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109386&req=5

fig1: The surgical robot drilling system used in cochleostomy supported on a fixed flexilock arm.
Mentions: The system consists of linear and rotational drives to feed and rotate standard surgical burrs. Currently the drill unit is attached to a flex-lock arm, permitting free movement to align the drill on the desired trajectory and then stabilization of the drill when drilling (Figure 1). Sensing through a discriminatory process of coupled features, feed force and torque transients enable perception of the critical phenomena of the tool working environment. Anticipation of conditions ahead of the tool before they are encountered enables discrimination of the approach to the critical endosteal membrane interface before it is reached. The drilling robot is able to autonomously adjust motion strategy with respect to the deforming tissues and achieve a consistent state in the result [11, 12].

Bottom Line: The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator.The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory.This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced.

View Article: PubMed Central - PubMed

Affiliation: Brunel Institute for Bioengineering, Brunel University, London UB8 3PH, UK.

ABSTRACT
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

Show MeSH