Limits...
Pathological fracture of the femur in Alagille syndrome that was treated with low-intensity pulsed ultrasound stimulation and an Ilizarov ring fixator: a case report.

Nozaka K, Shimada Y, Miyakoshi N, Yamada S, Kasukawa Y, Noguchi A - BMC Musculoskelet Disord (2014)

Bottom Line: The majority of patients suffer from chronic cholestasis, which can have a variety of adverse effects on bone metabolism.There was no leg-length discrepancy and no angular malalignment of the lower extremities as measured clinically and radiographically.The range of motion of the hip, knee, and ankle of the patient's operative leg matched the range of motion in the nonoperative leg.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Hondo, Akita 010-8543, Japan. kk-nozaka@mue.biglobe.ne.jp.

ABSTRACT

Background: Alagille syndrome is a multisystem disorder, which is characterized by hypoplasia of the intrahepatic bile ducts, malformations of the cardiovascular system, eyes, and vertebral column, and abnormal facies. Several of the characteristics of Alagille syndrome may result in an especially high risk of fracture. The majority of patients suffer from chronic cholestasis, which can have a variety of adverse effects on bone metabolism. In Alagille syndrome, fractures primarily occur in the lower limb long bones in the absence of significant trauma.

Case presentation: A 9-year-old Japanese girl with Alagille syndrome was admitted to our institution with marked hyperbilirubinemia and a pathological fracture of the femur. She had been diagnosed with biliary atresia at the age of 1 month and treated with surgical bile duct reconstruction, vitamins D and K, and ursodeoxycholic acid. However, her liver dysfunction and hyperbilirubinemia worsened. The pathological fracture of the femur was treated with low-intensity pulsed ultrasound stimulation (LIPUS) and an Ilizarov ring fixator. Seventy-four days after surgery, the patient had anatomically and functionally recovered. There was no leg-length discrepancy and no angular malalignment of the lower extremities as measured clinically and radiographically. The range of motion of the hip, knee, and ankle of the patient's operative leg matched the range of motion in the nonoperative leg.

Conclusion: To the best of our knowledge, there are no reports on use of the Ilizarov frame and LIPUS in diaphyseal femoral fractures in Alagille syndrome. This case report provides evidence that this procedure is successful for managing such diaphyseal fractures in Alagille syndrome.

Show MeSH

Related in: MedlinePlus

Radiographs show healing of the fracture at 53 days postoperatively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4109381&req=5

Figure 4: Radiographs show healing of the fracture at 53 days postoperatively.

Mentions: A 9-year-old girl with Alagille syndrome was referred to our hospital. She had been diagnosed with biliary atresia at the age of 1 month and treated with surgical bile duct reconstruction, vitamins D and K, and ursodeoxycholic acid. However, her liver dysfunction and hyperbilirubinemia worsened. When she was running during physical education, she suddenly felt an acute pain in her right knee. She could not walk and was taken to the emergency department of another hospital. She was found to have a sustained pathological fracture of the right femoral shaft and was treated with skeletal traction. However, repositioning the fractured bone was difficult. Because of her low weight (19 kg), application of skeletal traction with a heavy weight was difficult. On examination, she was malnourished with stunted growth (height: 126 cm, < 3rd centile; weight: 19 kg, < 3rd centile). She had most of the features of Alagille syndrome, including a characteristic face, mild peripheral pulmonary artery stenosis, butterfly vertebrae, posterior embryotoxon, and hyperbilirubinemia. Blood tests revealed anemia (hemoglobin, 8.3 mg/dL) and liver dysfunction with high serum aspartate transaminase (186 U), alanine aminotransferase (253 U), gamma-glutamyl-transpeptidase (1445 IU/L), serum total cholesterol (23.5 mmol/L), and serum alkaline phosphatase (3546 U) levels, as well as hyperbilirubinemia (218.9 μmol/L). Radiographs showed a left femoral shaft fracture (Orthopaedic Trauma Association classification: 32–A3.2) (Figure 1). Elastic nailing was considered; however, because of her narrow intramedullary canal, this was judged to not be a viable fixation method. Furthermore, we wanted to prevent increased bleeding caused by use of a locking plate because of the anemia. The left femur was osteoporotic, with beaking and cortical thickening (Figure 2). Therefore, there appeared to be a risk of pathological fracture of the left femur. We decided to use a closed indirect reduction technique with an Ilizarov ring fixator and to decrease bleeding. One day after admission to our institute, Ilizarov ring fixator surgery was performed with the patient under general anesthesia in the supine position without a thigh tourniquet. For the Ilizarov technique, a closed indirect reduction technique was performed under image guidance, by first using ligamentotaxis to compress the fracture ends (Figure 3). Repositioning was simple and complete. There was no need to open the fracture site, fixation was stable, and the growth plate was preserved. The tota1 operative time was 69 minutes. The hemog1obin concentration decreased from 8.3 mg/dL preoperative1y to 8.1 mg/dL the next day. This patient was not transfused. Immediately after surgery, treatment with a low-intensity pulsed ultrasound stimulation (LIPUS) device (SAFHS 2000, Exogen, Inc., Piscataway, NJ) was started for 20 min/day in September 2000. This device had a frequency of 1.5 MHz, a signal burst width of 200 microseconds, a signal repetition frequency of 1 kHz, and an intensity of 30 mW/cm2. There was no need for additional external immobilization. Physical therapy involving walking with weight-bearing on the operated leg was started immediately after surgery. The patient could walk without any support 1 week later. The hospital stay was 14 days. The patient was well after being discharged from hospital and enjoying school life with the frame. Use of LIPUS was continued, and the patient was allowed to walk without crutches. Radiographs showed healing of the fracture at 53 days postoperatively (Figure 4). In such cases, before actually removing the frame, the patient may be allowed full weight-bearing, in which all the uprights connecting the proximal and distal segments of the bone are disconnected, and the patient is asked to use the limb in a functional manner with weight-bearing for the lower limb for 3 weeks. This was performed in our case. Seventy-four days postoperatively, the frame was removed, and the patient had anatomically and functionally recovered. Two years postoperatively, there was no leg-length discrepancy and no angular malalignment of the lower extremities as determined clinically and radiographically. Furthermore, 2 years postoperatively, the range of motion of the hip, knee, and ankle of the patient’s operative leg matched the range of motion in the nonoperative leg (Figures 5 and 6).


Pathological fracture of the femur in Alagille syndrome that was treated with low-intensity pulsed ultrasound stimulation and an Ilizarov ring fixator: a case report.

Nozaka K, Shimada Y, Miyakoshi N, Yamada S, Kasukawa Y, Noguchi A - BMC Musculoskelet Disord (2014)

Radiographs show healing of the fracture at 53 days postoperatively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4109381&req=5

Figure 4: Radiographs show healing of the fracture at 53 days postoperatively.
Mentions: A 9-year-old girl with Alagille syndrome was referred to our hospital. She had been diagnosed with biliary atresia at the age of 1 month and treated with surgical bile duct reconstruction, vitamins D and K, and ursodeoxycholic acid. However, her liver dysfunction and hyperbilirubinemia worsened. When she was running during physical education, she suddenly felt an acute pain in her right knee. She could not walk and was taken to the emergency department of another hospital. She was found to have a sustained pathological fracture of the right femoral shaft and was treated with skeletal traction. However, repositioning the fractured bone was difficult. Because of her low weight (19 kg), application of skeletal traction with a heavy weight was difficult. On examination, she was malnourished with stunted growth (height: 126 cm, < 3rd centile; weight: 19 kg, < 3rd centile). She had most of the features of Alagille syndrome, including a characteristic face, mild peripheral pulmonary artery stenosis, butterfly vertebrae, posterior embryotoxon, and hyperbilirubinemia. Blood tests revealed anemia (hemoglobin, 8.3 mg/dL) and liver dysfunction with high serum aspartate transaminase (186 U), alanine aminotransferase (253 U), gamma-glutamyl-transpeptidase (1445 IU/L), serum total cholesterol (23.5 mmol/L), and serum alkaline phosphatase (3546 U) levels, as well as hyperbilirubinemia (218.9 μmol/L). Radiographs showed a left femoral shaft fracture (Orthopaedic Trauma Association classification: 32–A3.2) (Figure 1). Elastic nailing was considered; however, because of her narrow intramedullary canal, this was judged to not be a viable fixation method. Furthermore, we wanted to prevent increased bleeding caused by use of a locking plate because of the anemia. The left femur was osteoporotic, with beaking and cortical thickening (Figure 2). Therefore, there appeared to be a risk of pathological fracture of the left femur. We decided to use a closed indirect reduction technique with an Ilizarov ring fixator and to decrease bleeding. One day after admission to our institute, Ilizarov ring fixator surgery was performed with the patient under general anesthesia in the supine position without a thigh tourniquet. For the Ilizarov technique, a closed indirect reduction technique was performed under image guidance, by first using ligamentotaxis to compress the fracture ends (Figure 3). Repositioning was simple and complete. There was no need to open the fracture site, fixation was stable, and the growth plate was preserved. The tota1 operative time was 69 minutes. The hemog1obin concentration decreased from 8.3 mg/dL preoperative1y to 8.1 mg/dL the next day. This patient was not transfused. Immediately after surgery, treatment with a low-intensity pulsed ultrasound stimulation (LIPUS) device (SAFHS 2000, Exogen, Inc., Piscataway, NJ) was started for 20 min/day in September 2000. This device had a frequency of 1.5 MHz, a signal burst width of 200 microseconds, a signal repetition frequency of 1 kHz, and an intensity of 30 mW/cm2. There was no need for additional external immobilization. Physical therapy involving walking with weight-bearing on the operated leg was started immediately after surgery. The patient could walk without any support 1 week later. The hospital stay was 14 days. The patient was well after being discharged from hospital and enjoying school life with the frame. Use of LIPUS was continued, and the patient was allowed to walk without crutches. Radiographs showed healing of the fracture at 53 days postoperatively (Figure 4). In such cases, before actually removing the frame, the patient may be allowed full weight-bearing, in which all the uprights connecting the proximal and distal segments of the bone are disconnected, and the patient is asked to use the limb in a functional manner with weight-bearing for the lower limb for 3 weeks. This was performed in our case. Seventy-four days postoperatively, the frame was removed, and the patient had anatomically and functionally recovered. Two years postoperatively, there was no leg-length discrepancy and no angular malalignment of the lower extremities as determined clinically and radiographically. Furthermore, 2 years postoperatively, the range of motion of the hip, knee, and ankle of the patient’s operative leg matched the range of motion in the nonoperative leg (Figures 5 and 6).

Bottom Line: The majority of patients suffer from chronic cholestasis, which can have a variety of adverse effects on bone metabolism.There was no leg-length discrepancy and no angular malalignment of the lower extremities as measured clinically and radiographically.The range of motion of the hip, knee, and ankle of the patient's operative leg matched the range of motion in the nonoperative leg.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Hondo, Akita 010-8543, Japan. kk-nozaka@mue.biglobe.ne.jp.

ABSTRACT

Background: Alagille syndrome is a multisystem disorder, which is characterized by hypoplasia of the intrahepatic bile ducts, malformations of the cardiovascular system, eyes, and vertebral column, and abnormal facies. Several of the characteristics of Alagille syndrome may result in an especially high risk of fracture. The majority of patients suffer from chronic cholestasis, which can have a variety of adverse effects on bone metabolism. In Alagille syndrome, fractures primarily occur in the lower limb long bones in the absence of significant trauma.

Case presentation: A 9-year-old Japanese girl with Alagille syndrome was admitted to our institution with marked hyperbilirubinemia and a pathological fracture of the femur. She had been diagnosed with biliary atresia at the age of 1 month and treated with surgical bile duct reconstruction, vitamins D and K, and ursodeoxycholic acid. However, her liver dysfunction and hyperbilirubinemia worsened. The pathological fracture of the femur was treated with low-intensity pulsed ultrasound stimulation (LIPUS) and an Ilizarov ring fixator. Seventy-four days after surgery, the patient had anatomically and functionally recovered. There was no leg-length discrepancy and no angular malalignment of the lower extremities as measured clinically and radiographically. The range of motion of the hip, knee, and ankle of the patient's operative leg matched the range of motion in the nonoperative leg.

Conclusion: To the best of our knowledge, there are no reports on use of the Ilizarov frame and LIPUS in diaphyseal femoral fractures in Alagille syndrome. This case report provides evidence that this procedure is successful for managing such diaphyseal fractures in Alagille syndrome.

Show MeSH
Related in: MedlinePlus