Limits...
Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans.

Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, Hu Q, Xiao Y, Cong J, Ma L, Niu J, Liu X - BMC Microbiol. (2014)

Bottom Line: It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components.Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences.Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Minerals Processing and Bioengineering, Central South University, Changsha, China. yinhuaqun@gmail.com.

ABSTRACT

Background: Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation.

Results: The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase.

Conclusion: Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.

Show MeSH

Related in: MedlinePlus

The growth curve of Acidithiobacillus thiooxidans A01 in S0 medium and Na2S2O3 medium. Data are average of three growth experiments.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4109375&req=5

Figure 5: The growth curve of Acidithiobacillus thiooxidans A01 in S0 medium and Na2S2O3 medium. Data are average of three growth experiments.

Mentions: To examine the growth of A. thiooxidans A01, Starkey-S0 or Starkey-Na2S2O3 was used as the substrate in liquid media. The results showed that A. thiooxidans had the ability to utilize both S0 and Na2S2O3 as the energy sources (FigureĀ 5). Furthermore, the soluble Na2S2O3 was used prior to S0 and bacteria in the Na2S2O3 medium reached stationary phase earlier than that in the S0 medium. Moreover, the cell concentration of A. thiooxidans in the Na2S2O3 medium was obviously higher than that in the S0 medium, suggesting that A. thiooxidans has a highly efficient thiosulfate oxidizing ability to enable it to grow better with Na2S2O3 as substrate. One of possible reasons is that Na2S2O3 can more easily and quickly enter into the organism and then be used as energy source, while S0 needs to be activated before it is transferred into the periplasm, resulting in a slower growth and lower cell concentration with S0 as substrate.


Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans.

Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, Hu Q, Xiao Y, Cong J, Ma L, Niu J, Liu X - BMC Microbiol. (2014)

The growth curve of Acidithiobacillus thiooxidans A01 in S0 medium and Na2S2O3 medium. Data are average of three growth experiments.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4109375&req=5

Figure 5: The growth curve of Acidithiobacillus thiooxidans A01 in S0 medium and Na2S2O3 medium. Data are average of three growth experiments.
Mentions: To examine the growth of A. thiooxidans A01, Starkey-S0 or Starkey-Na2S2O3 was used as the substrate in liquid media. The results showed that A. thiooxidans had the ability to utilize both S0 and Na2S2O3 as the energy sources (FigureĀ 5). Furthermore, the soluble Na2S2O3 was used prior to S0 and bacteria in the Na2S2O3 medium reached stationary phase earlier than that in the S0 medium. Moreover, the cell concentration of A. thiooxidans in the Na2S2O3 medium was obviously higher than that in the S0 medium, suggesting that A. thiooxidans has a highly efficient thiosulfate oxidizing ability to enable it to grow better with Na2S2O3 as substrate. One of possible reasons is that Na2S2O3 can more easily and quickly enter into the organism and then be used as energy source, while S0 needs to be activated before it is transferred into the periplasm, resulting in a slower growth and lower cell concentration with S0 as substrate.

Bottom Line: It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components.Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences.Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Minerals Processing and Bioengineering, Central South University, Changsha, China. yinhuaqun@gmail.com.

ABSTRACT

Background: Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation.

Results: The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase.

Conclusion: Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.

Show MeSH
Related in: MedlinePlus