Limits...
Repair of segmental load-bearing bone defect by autologous mesenchymal stem cells and plasma-derived fibrin impregnated ceramic block results in early recovery of limb function.

Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, Mohamed Z, Bin Saim A, Idrus RB - Biomed Res Int (2014)

Bottom Line: Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0).Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%).Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa).

View Article: PubMed Central - PubMed

Affiliation: Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.

ABSTRACT
Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.

Show MeSH
Gross appearance of implants used in the three treatment groups.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109366&req=5

fig1: Gross appearance of implants used in the three treatment groups.

Mentions: The study has been approved by the Institution Research and Ethics Committee (Code no. UKM 1.5.3.5/244/PPP2). Female New Zealand White rabbits aged approximately 6 months and weighed approximately 2.5 kilograms were used as animal models. Each rabbit was subjected to a one-centimetre segmental defect at the midshaft of the left tibia and was randomly assigned for treatment with one of the three bone substitutes, namely, autologous tissue-engineered bone construct (TEB; n = 6), partially demineralized tubular tibia allograft (ALLO; n = 6), or fresh autologous marrow-impregnated ceramic (MIC; n = 6) (Figure 1). Three rabbits without bone substitutes were used as negative controls (CTRL; n = 3).


Repair of segmental load-bearing bone defect by autologous mesenchymal stem cells and plasma-derived fibrin impregnated ceramic block results in early recovery of limb function.

Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, Mohamed Z, Bin Saim A, Idrus RB - Biomed Res Int (2014)

Gross appearance of implants used in the three treatment groups.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109366&req=5

fig1: Gross appearance of implants used in the three treatment groups.
Mentions: The study has been approved by the Institution Research and Ethics Committee (Code no. UKM 1.5.3.5/244/PPP2). Female New Zealand White rabbits aged approximately 6 months and weighed approximately 2.5 kilograms were used as animal models. Each rabbit was subjected to a one-centimetre segmental defect at the midshaft of the left tibia and was randomly assigned for treatment with one of the three bone substitutes, namely, autologous tissue-engineered bone construct (TEB; n = 6), partially demineralized tubular tibia allograft (ALLO; n = 6), or fresh autologous marrow-impregnated ceramic (MIC; n = 6) (Figure 1). Three rabbits without bone substitutes were used as negative controls (CTRL; n = 3).

Bottom Line: Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0).Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%).Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa).

View Article: PubMed Central - PubMed

Affiliation: Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.

ABSTRACT
Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.

Show MeSH