Limits...
Familial thoracic aortic aneurysm with dissection presenting as flash pulmonary edema in a 26-year-old man.

Omar S, Moore T, Payne D, Momeni P, Mulkey Z, Paone R, Nugent K - Case Rep Med (2014)

Bottom Line: We are reporting a case of familial thoracic aortic aneurysm and dissection in a 26-year-old man with no significant past medical history and a family history of dissecting aortic aneurysm in his mother at the age of 40.The patient recovered well postoperatively.Genetic studies of the patient and his children revealed no mutations in ACTA2, TGFBR1, TGFBR2, TGFB2, MYH11, MYLK, SMAD3, or FBN1.

View Article: PubMed Central - PubMed

Affiliation: Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.

ABSTRACT
We are reporting a case of familial thoracic aortic aneurysm and dissection in a 26-year-old man with no significant past medical history and a family history of dissecting aortic aneurysm in his mother at the age of 40. The patient presented with cough, shortness of breath, and chest pain. Chest X-ray showed bilateral pulmonary infiltrates. CT scan of the chest showed a dissection of the ascending aorta. The patient underwent aortic dissection repair and three months later he returned to our hospital with new complaints of back pain. CT angiography showed a new aortic dissection extending from the left carotid artery through the bifurcation and into the iliac arteries. The patient underwent replacement of the aortic root, ascending aorta, total aortic arch, and aortic valve. The patient recovered well postoperatively. Genetic studies of the patient and his children revealed no mutations in ACTA2, TGFBR1, TGFBR2, TGFB2, MYH11, MYLK, SMAD3, or FBN1. This case report focuses on a patient with familial TAAD and discusses the associated genetic loci and available screening methods. It is important to recognize potential cases of familial TAAD and understand the available screening methods since early diagnosis allows appropriate management of risk factors and treatment when necessary.

No MeSH data available.


Related in: MedlinePlus

CT scan of chest prior to admission shows aortic dissection.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109323&req=5

fig2: CT scan of chest prior to admission shows aortic dissection.

Mentions: A 26-year-old man had no significant past medical history but had a family history of dissecting aortic aneurysm in his mother at the age of 40. The patient has a normal physical appearance and does not have any features that suggest Marfan's syndrome, Ehlers-Danlos syndrome, Loeys-Dietz syndrome, ANCA-positive vasculitis, or Takayasu's arteritis. The patient does not have disproportionately long extremities, hypertelorism, a bifid or broad uvula, craniosynostosis, cleft palate, club foot, translucent skin, soft velvety skin, easy bleeding, or easy bruising. He presented with cough, shortness of breath, and chest pain for 10 days. The patient's blood pressure on admission was 93/73 mmHg, heart rate was 115 bpm, and respiratory rate was 37 bpm. His laboratory work showed hemoglobin 9 Gm/dL, WBC 16 k/μL, ESR 12 mm/hr, CRP 2 mg/dL, D-dimer 942 ng/mL, BNP 1000 pg/mL, and troponin T 0.05 ng/mL. Chest X-ray at the time of presentation showed bilateral pulmonary infiltrates (Figure 1(a)). He was treated outside the hospital for bronchopneumonia but did not improve. When a CT scan of the chest showed a dissecting aneurysm of the ascending aorta (Figure 2), the patient was transferred to our hospital and successfully underwent aortic dissection repair. Resuspension of the aortic valve and replacement of the ascending aorta with a 24 mm hemashield gold interposition graft were performed. The patient did well postoperatively but remained intubated due to high respiratory rate during CPAP trials. This was likely due to pulmonary edema, as evidenced by bilateral lower lung field opacities seen on chest X-ray (Figure 1(b)). CPAP weaning trials were performed daily, and he was successfully extubated on postoperative day 5. The patient was discharged home on carvedilol 12.5 mg twice a day. A follow-up 3D reconstruction of the aorta 82 days after the surgery is shown in Figure 3. Three months after aortic dissection repair, the patient returned to our hospital with new complaints of sharp back pain. On physical examination, a new diastolic murmur was heard at the left sternal border. CT angiography with 3D reconstruction showed a dissection of the aortic arch with dilated aortic root measuring 5.3 cm. The origins of the innominate artery, left common carotid artery, and left subclavian artery were dissected focally, and the dissection continued down into the common iliac arteries bilaterally (Figures 4 and 5). Echocardiogram showed severe aortic insufficiency with ejection fraction 50%. Because of the progression of his chronic dissection, the dilated aortic root, and severe aortic insufficiency, the patient underwent reoperation. The right axillary artery was cannulated via an 8 mm hemashield graft. Venous drainage was accomplished using a 2-stage venous cannula via the right atrium. Once on bypass, systemic cooling was begun with an eventual bladder temperature of 16–20 degrees C. Cardiac arrest and myocardial protection were accomplished using retrograde cold blood cardioplegia and systemic hypothermia. During the cooling phase, the aortic valve and ascending aorta were replaced with a number 29 On-X valved conduit. The right and left main coronary arteries were reimplanted into the ascending aortic graft. With continuous antegrade cerebral perfusion via the right axillary cannula and a presumed patent circle of Willis, total circulatory arrest was achieved and the aortic arch was replaced. A number 26 hemashield graft was used with a number 12 and number 8 graft attached end to end to the innominate and left carotid arteries, respectively. The proximal ends of the two grafts were attached previously to the arch graft using 5-0 prolene suture. A piece of reversed saphenous vein was used in end to end fashion for the left subclavian artery which was unusually small. The proximal end of the saphenous vein was attached to the arch graft with 5-0 prolene suture. The number 26 hemashield graft was used in an “elephant trunk” fashion. He did well after surgery and was discharged home on warfarin, amlodipine, carvedilol, and losartan. Due to the family history of aortic dissection in his mother at early age, genetic studies on the patient and his children were performed. The genomic DNA was extracted from peripheral blood and was amplified using standard procedures by touchdown PCR of all coding exons with their exon-intron boundaries of ACTA2 and sequencing 6 other genes using forward and reverse primers located in the flanking introns. The PCR products were analyzed by gel electrophoresis and visualized by ethidium bromide staining on 2% agarose gels. The genetic studies revealed no mutations in ACTA2, TGFBR1, TGFBR2, TGFB2, MYH11, MYLK, SMAD3, or FBN1. The patient was referred to John Ritter research program in the University of Texas Medical School at Houston for additional genetic testing.


Familial thoracic aortic aneurysm with dissection presenting as flash pulmonary edema in a 26-year-old man.

Omar S, Moore T, Payne D, Momeni P, Mulkey Z, Paone R, Nugent K - Case Rep Med (2014)

CT scan of chest prior to admission shows aortic dissection.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109323&req=5

fig2: CT scan of chest prior to admission shows aortic dissection.
Mentions: A 26-year-old man had no significant past medical history but had a family history of dissecting aortic aneurysm in his mother at the age of 40. The patient has a normal physical appearance and does not have any features that suggest Marfan's syndrome, Ehlers-Danlos syndrome, Loeys-Dietz syndrome, ANCA-positive vasculitis, or Takayasu's arteritis. The patient does not have disproportionately long extremities, hypertelorism, a bifid or broad uvula, craniosynostosis, cleft palate, club foot, translucent skin, soft velvety skin, easy bleeding, or easy bruising. He presented with cough, shortness of breath, and chest pain for 10 days. The patient's blood pressure on admission was 93/73 mmHg, heart rate was 115 bpm, and respiratory rate was 37 bpm. His laboratory work showed hemoglobin 9 Gm/dL, WBC 16 k/μL, ESR 12 mm/hr, CRP 2 mg/dL, D-dimer 942 ng/mL, BNP 1000 pg/mL, and troponin T 0.05 ng/mL. Chest X-ray at the time of presentation showed bilateral pulmonary infiltrates (Figure 1(a)). He was treated outside the hospital for bronchopneumonia but did not improve. When a CT scan of the chest showed a dissecting aneurysm of the ascending aorta (Figure 2), the patient was transferred to our hospital and successfully underwent aortic dissection repair. Resuspension of the aortic valve and replacement of the ascending aorta with a 24 mm hemashield gold interposition graft were performed. The patient did well postoperatively but remained intubated due to high respiratory rate during CPAP trials. This was likely due to pulmonary edema, as evidenced by bilateral lower lung field opacities seen on chest X-ray (Figure 1(b)). CPAP weaning trials were performed daily, and he was successfully extubated on postoperative day 5. The patient was discharged home on carvedilol 12.5 mg twice a day. A follow-up 3D reconstruction of the aorta 82 days after the surgery is shown in Figure 3. Three months after aortic dissection repair, the patient returned to our hospital with new complaints of sharp back pain. On physical examination, a new diastolic murmur was heard at the left sternal border. CT angiography with 3D reconstruction showed a dissection of the aortic arch with dilated aortic root measuring 5.3 cm. The origins of the innominate artery, left common carotid artery, and left subclavian artery were dissected focally, and the dissection continued down into the common iliac arteries bilaterally (Figures 4 and 5). Echocardiogram showed severe aortic insufficiency with ejection fraction 50%. Because of the progression of his chronic dissection, the dilated aortic root, and severe aortic insufficiency, the patient underwent reoperation. The right axillary artery was cannulated via an 8 mm hemashield graft. Venous drainage was accomplished using a 2-stage venous cannula via the right atrium. Once on bypass, systemic cooling was begun with an eventual bladder temperature of 16–20 degrees C. Cardiac arrest and myocardial protection were accomplished using retrograde cold blood cardioplegia and systemic hypothermia. During the cooling phase, the aortic valve and ascending aorta were replaced with a number 29 On-X valved conduit. The right and left main coronary arteries were reimplanted into the ascending aortic graft. With continuous antegrade cerebral perfusion via the right axillary cannula and a presumed patent circle of Willis, total circulatory arrest was achieved and the aortic arch was replaced. A number 26 hemashield graft was used with a number 12 and number 8 graft attached end to end to the innominate and left carotid arteries, respectively. The proximal ends of the two grafts were attached previously to the arch graft using 5-0 prolene suture. A piece of reversed saphenous vein was used in end to end fashion for the left subclavian artery which was unusually small. The proximal end of the saphenous vein was attached to the arch graft with 5-0 prolene suture. The number 26 hemashield graft was used in an “elephant trunk” fashion. He did well after surgery and was discharged home on warfarin, amlodipine, carvedilol, and losartan. Due to the family history of aortic dissection in his mother at early age, genetic studies on the patient and his children were performed. The genomic DNA was extracted from peripheral blood and was amplified using standard procedures by touchdown PCR of all coding exons with their exon-intron boundaries of ACTA2 and sequencing 6 other genes using forward and reverse primers located in the flanking introns. The PCR products were analyzed by gel electrophoresis and visualized by ethidium bromide staining on 2% agarose gels. The genetic studies revealed no mutations in ACTA2, TGFBR1, TGFBR2, TGFB2, MYH11, MYLK, SMAD3, or FBN1. The patient was referred to John Ritter research program in the University of Texas Medical School at Houston for additional genetic testing.

Bottom Line: We are reporting a case of familial thoracic aortic aneurysm and dissection in a 26-year-old man with no significant past medical history and a family history of dissecting aortic aneurysm in his mother at the age of 40.The patient recovered well postoperatively.Genetic studies of the patient and his children revealed no mutations in ACTA2, TGFBR1, TGFBR2, TGFB2, MYH11, MYLK, SMAD3, or FBN1.

View Article: PubMed Central - PubMed

Affiliation: Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.

ABSTRACT
We are reporting a case of familial thoracic aortic aneurysm and dissection in a 26-year-old man with no significant past medical history and a family history of dissecting aortic aneurysm in his mother at the age of 40. The patient presented with cough, shortness of breath, and chest pain. Chest X-ray showed bilateral pulmonary infiltrates. CT scan of the chest showed a dissection of the ascending aorta. The patient underwent aortic dissection repair and three months later he returned to our hospital with new complaints of back pain. CT angiography showed a new aortic dissection extending from the left carotid artery through the bifurcation and into the iliac arteries. The patient underwent replacement of the aortic root, ascending aorta, total aortic arch, and aortic valve. The patient recovered well postoperatively. Genetic studies of the patient and his children revealed no mutations in ACTA2, TGFBR1, TGFBR2, TGFB2, MYH11, MYLK, SMAD3, or FBN1. This case report focuses on a patient with familial TAAD and discusses the associated genetic loci and available screening methods. It is important to recognize potential cases of familial TAAD and understand the available screening methods since early diagnosis allows appropriate management of risk factors and treatment when necessary.

No MeSH data available.


Related in: MedlinePlus