Limits...
An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases.

Boucher JI, Jacobowitz JR, Beckett BC, Classen S, Theobald DL - Elife (2014)

Bottom Line: Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect.Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event.This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry, Brandeis University, Waltham, United States.

ABSTRACT
Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.

Show MeSH

Related in: MedlinePlus

Phylogeny of M/LDH superfamily.Same phylogeny as Figure 3A. The tree is colored by domain of life (eubacterial—vermilion; eukaryotic—blue; archeal—magenta).DOI:http://dx.doi.org/10.7554/eLife.02304.012
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109310&req=5

fig3s2: Phylogeny of M/LDH superfamily.Same phylogeny as Figure 3A. The tree is colored by domain of life (eubacterial—vermilion; eukaryotic—blue; archeal—magenta).DOI:http://dx.doi.org/10.7554/eLife.02304.012

Mentions: Except for the HicDHs, which are exclusively eubacterial, both eukaryotic and eubacterial enzymes are found in all major clades (Figure 3—figure supplement 2). The ‘LDH-like’ MDH clade additionally contains archaeal dehydrogenases, which are basal and group to the exclusion of the bacterial MDHs.


An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases.

Boucher JI, Jacobowitz JR, Beckett BC, Classen S, Theobald DL - Elife (2014)

Phylogeny of M/LDH superfamily.Same phylogeny as Figure 3A. The tree is colored by domain of life (eubacterial—vermilion; eukaryotic—blue; archeal—magenta).DOI:http://dx.doi.org/10.7554/eLife.02304.012
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109310&req=5

fig3s2: Phylogeny of M/LDH superfamily.Same phylogeny as Figure 3A. The tree is colored by domain of life (eubacterial—vermilion; eukaryotic—blue; archeal—magenta).DOI:http://dx.doi.org/10.7554/eLife.02304.012
Mentions: Except for the HicDHs, which are exclusively eubacterial, both eukaryotic and eubacterial enzymes are found in all major clades (Figure 3—figure supplement 2). The ‘LDH-like’ MDH clade additionally contains archaeal dehydrogenases, which are basal and group to the exclusion of the bacterial MDHs.

Bottom Line: Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect.Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event.This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry, Brandeis University, Waltham, United States.

ABSTRACT
Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.

Show MeSH
Related in: MedlinePlus