Limits...
An adaptive framework for real-time ECG transmission in mobile environments.

Kang K - ScientificWorldJournal (2014)

Bottom Line: According to this observation, we have devised a simple and efficient real-time scheduling algorithm based on the earliest deadline first (EDF) policy, which decides the order of transmitting or retransmitting packets that contain ECG data at any given time for the delivery of scalable ECG data over a lossy channel.The algorithm takes into account the differing priorities of packets in each layer, which prevents the perceived quality of the reconstructed ECG signal from degrading abruptly as channel conditions worsen, while using the available bandwidth efficiently.Extensive simulations demonstrate this improvement in perceived quality.

View Article: PubMed Central - PubMed

Affiliation: Department of Computer Science and Engineering, Hanyang University, Ansan 426-791, Republic of Korea.

ABSTRACT
Wireless electrocardiogram (ECG) monitoring involves the measurement of ECG signals and their timely transmission over wireless networks to remote healthcare professionals. However, fluctuations in wireless channel conditions pose quality-of-service challenges for real-time ECG monitoring services in a mobile environment. We present an adaptive framework for layered coding and transmission of ECG data that can cope with a time-varying wireless channel. The ECG is segmented into layers with differing importance with respect to the quality of the reconstructed signal. According to this observation, we have devised a simple and efficient real-time scheduling algorithm based on the earliest deadline first (EDF) policy, which decides the order of transmitting or retransmitting packets that contain ECG data at any given time for the delivery of scalable ECG data over a lossy channel. The algorithm takes into account the differing priorities of packets in each layer, which prevents the perceived quality of the reconstructed ECG signal from degrading abruptly as channel conditions worsen, while using the available bandwidth efficiently. Extensive simulations demonstrate this improvement in perceived quality.

Show MeSH

Related in: MedlinePlus

Interpolation of lost samples.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4109261&req=5

fig7: Interpolation of lost samples.

Mentions: Packets that still contain errors after retransmission or miss their deadlines have to be discarded, and the samples that they contain are lost. To avoid a gap in the reconstructed waveform, we can replace the missing samples by interpolation ((4) in Figure 6(b)), which is conveniently performed in the RMSs in the application layer of the protocol stack. We considered two methods of interpolation, as shown in Figure 7.


An adaptive framework for real-time ECG transmission in mobile environments.

Kang K - ScientificWorldJournal (2014)

Interpolation of lost samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4109261&req=5

fig7: Interpolation of lost samples.
Mentions: Packets that still contain errors after retransmission or miss their deadlines have to be discarded, and the samples that they contain are lost. To avoid a gap in the reconstructed waveform, we can replace the missing samples by interpolation ((4) in Figure 6(b)), which is conveniently performed in the RMSs in the application layer of the protocol stack. We considered two methods of interpolation, as shown in Figure 7.

Bottom Line: According to this observation, we have devised a simple and efficient real-time scheduling algorithm based on the earliest deadline first (EDF) policy, which decides the order of transmitting or retransmitting packets that contain ECG data at any given time for the delivery of scalable ECG data over a lossy channel.The algorithm takes into account the differing priorities of packets in each layer, which prevents the perceived quality of the reconstructed ECG signal from degrading abruptly as channel conditions worsen, while using the available bandwidth efficiently.Extensive simulations demonstrate this improvement in perceived quality.

View Article: PubMed Central - PubMed

Affiliation: Department of Computer Science and Engineering, Hanyang University, Ansan 426-791, Republic of Korea.

ABSTRACT
Wireless electrocardiogram (ECG) monitoring involves the measurement of ECG signals and their timely transmission over wireless networks to remote healthcare professionals. However, fluctuations in wireless channel conditions pose quality-of-service challenges for real-time ECG monitoring services in a mobile environment. We present an adaptive framework for layered coding and transmission of ECG data that can cope with a time-varying wireless channel. The ECG is segmented into layers with differing importance with respect to the quality of the reconstructed signal. According to this observation, we have devised a simple and efficient real-time scheduling algorithm based on the earliest deadline first (EDF) policy, which decides the order of transmitting or retransmitting packets that contain ECG data at any given time for the delivery of scalable ECG data over a lossy channel. The algorithm takes into account the differing priorities of packets in each layer, which prevents the perceived quality of the reconstructed ECG signal from degrading abruptly as channel conditions worsen, while using the available bandwidth efficiently. Extensive simulations demonstrate this improvement in perceived quality.

Show MeSH
Related in: MedlinePlus