Limits...
Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.

Lie G, Zejian R, Pingshu G, Jing C - ScientificWorldJournal (2014)

Bottom Line: Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance.To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim.Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller.

View Article: PubMed Central - PubMed

Affiliation: School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China.

ABSTRACT
Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

Show MeSH

Related in: MedlinePlus

The relative distance.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4109130&req=5

fig14: The relative distance.

Mentions: In this case, the pedestrian's walking velocity is neglected in reference to the host vehicle and assumed to be zero. The pedestrian is detected 25 m ahead of the host vehicle, which is running at a constant velocity of 60 km/h. The pedestrian is in extremely dangerous state after the traffic safety state estimation, and the host vehicle should be controlled for emergency collision avoidance. Before the simulation, the initial position of the pedestrian is placed 25 m ahead of the original point. The host vehicle starts to move from the original point with a constant velocity of 60 km/h. The simulation duration is set to10 s in CarSim. The simulation results are shown in Figures 12to 14.


Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.

Lie G, Zejian R, Pingshu G, Jing C - ScientificWorldJournal (2014)

The relative distance.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4109130&req=5

fig14: The relative distance.
Mentions: In this case, the pedestrian's walking velocity is neglected in reference to the host vehicle and assumed to be zero. The pedestrian is detected 25 m ahead of the host vehicle, which is running at a constant velocity of 60 km/h. The pedestrian is in extremely dangerous state after the traffic safety state estimation, and the host vehicle should be controlled for emergency collision avoidance. Before the simulation, the initial position of the pedestrian is placed 25 m ahead of the original point. The host vehicle starts to move from the original point with a constant velocity of 60 km/h. The simulation duration is set to10 s in CarSim. The simulation results are shown in Figures 12to 14.

Bottom Line: Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance.To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim.Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller.

View Article: PubMed Central - PubMed

Affiliation: School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China.

ABSTRACT
Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

Show MeSH
Related in: MedlinePlus