Limits...
Study of the effect of distance and misalignment between magnetically coupled coils for wireless power transfer in intraocular pressure measurement.

Rendon-Nava AE, Díaz-Méndez JA, Nino-de-Rivera L, Calleja-Arriaga W, Gil-Carrasco F, Díaz-Alonso D - ScientificWorldJournal (2014)

Bottom Line: Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity.The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal.In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

View Article: PubMed Central - PubMed

Affiliation: Graduate Department, National Polytechnic Institute of Mexico (IPN), ESIME UPC, Avenida Santa Ana 1000, San Francisco Culhuacan, 04260 Mexico City, DF, Mexico.

ABSTRACT
An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

Show MeSH

Related in: MedlinePlus

RLC circuits encapsulated in polyimide.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4109074&req=5

fig18: RLC circuits encapsulated in polyimide.

Mentions: New prototypes of the implant RLC circuit were fabricated at the National Institute of Astrophysics, Optics and Electronics with a two-metal layer fabrication process. The fabricated RLC circuits are shown in Figure 18. The metal used in the fabrication process was aluminum. The capacitor consisted of two parallel plates of 1 μm in thickness each and with 1.5 μm of polyimide as the dielectric material between them. The second capacitor from right to left of the upper row of coils in Figure 18 was designed to have a capacitance of 32 pF. The last two capacitors from the left of the same upper row were designed to have a −10% and +10% of area from the original capacitor of 32 pF, respectively. Pads to the lower row of RLC circuits in the layout were added to measure capacitance and electrical resistance (Figure 19). Additional test structures were added to measure contact and resistance between metal layers.


Study of the effect of distance and misalignment between magnetically coupled coils for wireless power transfer in intraocular pressure measurement.

Rendon-Nava AE, Díaz-Méndez JA, Nino-de-Rivera L, Calleja-Arriaga W, Gil-Carrasco F, Díaz-Alonso D - ScientificWorldJournal (2014)

RLC circuits encapsulated in polyimide.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4109074&req=5

fig18: RLC circuits encapsulated in polyimide.
Mentions: New prototypes of the implant RLC circuit were fabricated at the National Institute of Astrophysics, Optics and Electronics with a two-metal layer fabrication process. The fabricated RLC circuits are shown in Figure 18. The metal used in the fabrication process was aluminum. The capacitor consisted of two parallel plates of 1 μm in thickness each and with 1.5 μm of polyimide as the dielectric material between them. The second capacitor from right to left of the upper row of coils in Figure 18 was designed to have a capacitance of 32 pF. The last two capacitors from the left of the same upper row were designed to have a −10% and +10% of area from the original capacitor of 32 pF, respectively. Pads to the lower row of RLC circuits in the layout were added to measure capacitance and electrical resistance (Figure 19). Additional test structures were added to measure contact and resistance between metal layers.

Bottom Line: Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity.The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal.In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

View Article: PubMed Central - PubMed

Affiliation: Graduate Department, National Polytechnic Institute of Mexico (IPN), ESIME UPC, Avenida Santa Ana 1000, San Francisco Culhuacan, 04260 Mexico City, DF, Mexico.

ABSTRACT
An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

Show MeSH
Related in: MedlinePlus