Limits...
Study of the effect of distance and misalignment between magnetically coupled coils for wireless power transfer in intraocular pressure measurement.

Rendon-Nava AE, Díaz-Méndez JA, Nino-de-Rivera L, Calleja-Arriaga W, Gil-Carrasco F, Díaz-Alonso D - ScientificWorldJournal (2014)

Bottom Line: Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity.The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal.In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

View Article: PubMed Central - PubMed

Affiliation: Graduate Department, National Polytechnic Institute of Mexico (IPN), ESIME UPC, Avenida Santa Ana 1000, San Francisco Culhuacan, 04260 Mexico City, DF, Mexico.

ABSTRACT
An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

Show MeSH

Related in: MedlinePlus

Misalignment between coils. Transmission medium between coils: 1 mm of pork skin and 1 mm of fat.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4109074&req=5

fig17: Misalignment between coils. Transmission medium between coils: 1 mm of pork skin and 1 mm of fat.

Mentions: Since the measurements carried out with skin and fat tissue presented a greater voltage variation of 40 mVp, as opposed to the measurements with skin, fat, and muscle which presented a voltage variation of 20 mVp, misalignment measurements between coils were repeated by using skin and fat tissue. As with the former misalignment measurements, decoupling between coils was measured by separating the transverse axes of the coils at 5 mm, 10 mm, and 15 mm units, and for each of the misalignment distances, peak voltage of the reader coil was measured at three different vertical distances between coils, 4 mm, 7 mm, and 12 mm. Figure 17 shows the measurements made with a transmission medium of 1 mm of pork skin and 1 mm of fat.


Study of the effect of distance and misalignment between magnetically coupled coils for wireless power transfer in intraocular pressure measurement.

Rendon-Nava AE, Díaz-Méndez JA, Nino-de-Rivera L, Calleja-Arriaga W, Gil-Carrasco F, Díaz-Alonso D - ScientificWorldJournal (2014)

Misalignment between coils. Transmission medium between coils: 1 mm of pork skin and 1 mm of fat.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4109074&req=5

fig17: Misalignment between coils. Transmission medium between coils: 1 mm of pork skin and 1 mm of fat.
Mentions: Since the measurements carried out with skin and fat tissue presented a greater voltage variation of 40 mVp, as opposed to the measurements with skin, fat, and muscle which presented a voltage variation of 20 mVp, misalignment measurements between coils were repeated by using skin and fat tissue. As with the former misalignment measurements, decoupling between coils was measured by separating the transverse axes of the coils at 5 mm, 10 mm, and 15 mm units, and for each of the misalignment distances, peak voltage of the reader coil was measured at three different vertical distances between coils, 4 mm, 7 mm, and 12 mm. Figure 17 shows the measurements made with a transmission medium of 1 mm of pork skin and 1 mm of fat.

Bottom Line: Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity.The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal.In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

View Article: PubMed Central - PubMed

Affiliation: Graduate Department, National Polytechnic Institute of Mexico (IPN), ESIME UPC, Avenida Santa Ana 1000, San Francisco Culhuacan, 04260 Mexico City, DF, Mexico.

ABSTRACT
An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

Show MeSH
Related in: MedlinePlus