Limits...
A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair.

Snyder TN, Madhavan K, Intrator M, Dregalla RC, Park D - J Biol Eng (2014)

Bottom Line: This chondrogenic hydrogel system can be delivered in a minimally invasive manner through a small gauge needle, forming a three-dimensional (3D) network structure in situ.However, an ongoing problem with fibrin/HA-based biomaterials is poor mechanical strength.Quantitative polymerase chain reaction (qPCR) of BMSCs incubated in the fibrin/HA-MA hydrogel confirmed decreased expression of collagen type 1 alpha 1 mRNA with an increase in Sox9 mRNA expression especially in the presence of a platelet lysate, suggesting early chondrogenesis.

View Article: PubMed Central - HTML - PubMed

Affiliation: Bioengineering Department, University of Colorado, Anschutz Medical Campus, Mail Stop 8607, 12700 East 19th Avenue, Aurora, CO 80045, USA ; Regenerative Sciences, 403 Summit Blvd, Suite 201, Broomfield, CO 80021, USA.

ABSTRACT

Background: Osteoarthritis (OA) is a degenerative joint disease affecting approximately 27 million Americans, and even more worldwide. OA is characterized by degeneration of subchondral bone and articular cartilage. In this study, a chondrogenic fibrin/hyaluronic acid (HA)-based hydrogel seeded with bone marrow-derived mesenchymal stem cells (BMSCs) was investigated as a method of regenerating these tissues for OA therapy. This chondrogenic hydrogel system can be delivered in a minimally invasive manner through a small gauge needle, forming a three-dimensional (3D) network structure in situ. However, an ongoing problem with fibrin/HA-based biomaterials is poor mechanical strength. This was addressed by modifying HA with methacrylic anhydride (MA) (HA-MA), which reinforces the fibrin gel, thereby improving mechanical properties. In this study, a range of fibrinogen (the fibrin precursor) and HA-MA concentrations were explored to determine optimal conditions for increased mechanical strength, BMSC proliferation, and chondrogenesis potential in vitro.

Results: Increased mechanical strength was achieved by HA-MA reinforcement within fibrin hydrogels, and was directly correlated with increasing HA-MA concentration. Live/dead staining and metabolic assays confirmed that the crosslinked fibrin/HA-MA hydrogels provided a suitable 3D environment for BMSC proliferation. Quantitative polymerase chain reaction (qPCR) of BMSCs incubated in the fibrin/HA-MA hydrogel confirmed decreased expression of collagen type 1 alpha 1 mRNA with an increase in Sox9 mRNA expression especially in the presence of a platelet lysate, suggesting early chondrogenesis.

Conclusion: Fibrin/HA-MA hydrogel may be a suitable delivery method for BMSCs, inducing BMSC differentiation into chondrocytes and potentially aiding in articular cartilage repair for OA therapy.

No MeSH data available.


Related in: MedlinePlus

1H NMR spectra of HA (A) and HA-MA (B) with proton peaks in the methyl groups as well as the sugar rings labeled. 1H for relevant peaks in each figure have been underlined.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4109069&req=5

Figure 2: 1H NMR spectra of HA (A) and HA-MA (B) with proton peaks in the methyl groups as well as the sugar rings labeled. 1H for relevant peaks in each figure have been underlined.

Mentions: The successful conjugation of MA to HA was confirmed by proton nuclear magnetic resonance (1H NMR) spectra (Figure 2). The NMR spectrum of native HA (Figure 2A) confirmed the presence of HA methyl protons at 1.9 ppm [29]. After conversion, the protons in methacrylate vinyl groups appeared at 5.6 ppm and 6.1 ppm, and the MA methyl protons were confirmed at 1.8 ppm (Figure 2B). Degree of methacrylation was determined, as described previously [47], by the ratio of the integral of the HA methyl proton peak (at ~1.9 ppm) to that of the protons of MA (at ~5.6 ppm and ~6 ppm). The degree of methacrylation was calculated as 95 ± 13%, which represents almost one methacrylate group per disaccharide unit of HA.


A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair.

Snyder TN, Madhavan K, Intrator M, Dregalla RC, Park D - J Biol Eng (2014)

1H NMR spectra of HA (A) and HA-MA (B) with proton peaks in the methyl groups as well as the sugar rings labeled. 1H for relevant peaks in each figure have been underlined.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4109069&req=5

Figure 2: 1H NMR spectra of HA (A) and HA-MA (B) with proton peaks in the methyl groups as well as the sugar rings labeled. 1H for relevant peaks in each figure have been underlined.
Mentions: The successful conjugation of MA to HA was confirmed by proton nuclear magnetic resonance (1H NMR) spectra (Figure 2). The NMR spectrum of native HA (Figure 2A) confirmed the presence of HA methyl protons at 1.9 ppm [29]. After conversion, the protons in methacrylate vinyl groups appeared at 5.6 ppm and 6.1 ppm, and the MA methyl protons were confirmed at 1.8 ppm (Figure 2B). Degree of methacrylation was determined, as described previously [47], by the ratio of the integral of the HA methyl proton peak (at ~1.9 ppm) to that of the protons of MA (at ~5.6 ppm and ~6 ppm). The degree of methacrylation was calculated as 95 ± 13%, which represents almost one methacrylate group per disaccharide unit of HA.

Bottom Line: This chondrogenic hydrogel system can be delivered in a minimally invasive manner through a small gauge needle, forming a three-dimensional (3D) network structure in situ.However, an ongoing problem with fibrin/HA-based biomaterials is poor mechanical strength.Quantitative polymerase chain reaction (qPCR) of BMSCs incubated in the fibrin/HA-MA hydrogel confirmed decreased expression of collagen type 1 alpha 1 mRNA with an increase in Sox9 mRNA expression especially in the presence of a platelet lysate, suggesting early chondrogenesis.

View Article: PubMed Central - HTML - PubMed

Affiliation: Bioengineering Department, University of Colorado, Anschutz Medical Campus, Mail Stop 8607, 12700 East 19th Avenue, Aurora, CO 80045, USA ; Regenerative Sciences, 403 Summit Blvd, Suite 201, Broomfield, CO 80021, USA.

ABSTRACT

Background: Osteoarthritis (OA) is a degenerative joint disease affecting approximately 27 million Americans, and even more worldwide. OA is characterized by degeneration of subchondral bone and articular cartilage. In this study, a chondrogenic fibrin/hyaluronic acid (HA)-based hydrogel seeded with bone marrow-derived mesenchymal stem cells (BMSCs) was investigated as a method of regenerating these tissues for OA therapy. This chondrogenic hydrogel system can be delivered in a minimally invasive manner through a small gauge needle, forming a three-dimensional (3D) network structure in situ. However, an ongoing problem with fibrin/HA-based biomaterials is poor mechanical strength. This was addressed by modifying HA with methacrylic anhydride (MA) (HA-MA), which reinforces the fibrin gel, thereby improving mechanical properties. In this study, a range of fibrinogen (the fibrin precursor) and HA-MA concentrations were explored to determine optimal conditions for increased mechanical strength, BMSC proliferation, and chondrogenesis potential in vitro.

Results: Increased mechanical strength was achieved by HA-MA reinforcement within fibrin hydrogels, and was directly correlated with increasing HA-MA concentration. Live/dead staining and metabolic assays confirmed that the crosslinked fibrin/HA-MA hydrogels provided a suitable 3D environment for BMSC proliferation. Quantitative polymerase chain reaction (qPCR) of BMSCs incubated in the fibrin/HA-MA hydrogel confirmed decreased expression of collagen type 1 alpha 1 mRNA with an increase in Sox9 mRNA expression especially in the presence of a platelet lysate, suggesting early chondrogenesis.

Conclusion: Fibrin/HA-MA hydrogel may be a suitable delivery method for BMSCs, inducing BMSC differentiation into chondrocytes and potentially aiding in articular cartilage repair for OA therapy.

No MeSH data available.


Related in: MedlinePlus