Limits...
Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells.

Chen C, Jiang P, Xue H, Peterson SE, Tran HT, McCann AE, Parast MM, Li S, Pleasure DE, Laurent LC, Loring JF, Liu Y, Deng W - Nat Commun (2014)

Bottom Line: DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules.Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo.Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia.

View Article: PubMed Central - PubMed

Affiliation: 1] Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817, USA [3] Department of Neurology, Institute of Neurology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300070, China [4].

ABSTRACT
Down's syndrome (DS), caused by trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons, and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug.

No MeSH data available.


Related in: MedlinePlus

© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109022&req=5


Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells.

Chen C, Jiang P, Xue H, Peterson SE, Tran HT, McCann AE, Parast MM, Li S, Pleasure DE, Laurent LC, Loring JF, Liu Y, Deng W - Nat Commun (2014)

© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109022&req=5

Bottom Line: DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules.Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo.Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia.

View Article: PubMed Central - PubMed

Affiliation: 1] Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817, USA [3] Department of Neurology, Institute of Neurology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300070, China [4].

ABSTRACT
Down's syndrome (DS), caused by trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons, and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug.

No MeSH data available.


Related in: MedlinePlus