Limits...
Intelligent advisory speed limit dedication in highway using VANET.

Jalooli A, Shaghaghi E, Jabbarpour MR, Noor RM, Yeo H, Jung JJ - ScientificWorldJournal (2014)

Bottom Line: The IASLD provides the advisory speed limit for each vehicle exclusively based on the vehicle's characteristics including the vehicle type, size, and safety capabilities as well as traffic and weather conditions.The proposed approach takes advantage of vehicular ad hoc network (VANET) to accelerate its performance, in the way that simulation results demonstrate the reduction of incident detection time up to 31.2% in comparison with traditional VSL strategy.The simulation results similarly indicate the improvement of traffic flow efficiency, occupancy, and travel time in different conditions.

View Article: PubMed Central - PubMed

Affiliation: Department of Computer System and Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia.

ABSTRACT
Variable speed limits (VSLs) as a mean for enhancing road traffic safety are studied for decades to modify the speed limit based on the prevailing road circumstances. In this study the pros and cons of VSL systems and their effects on traffic controlling efficiency are summarized. Despite the potential effectiveness of utilizing VSLs, we have witnessed that the effectiveness of this system is impacted by factors such as VSL control strategy used and the level of driver compliance. Hence, the proposed approach called Intelligent Advisory Speed Limit Dedication (IASLD) as the novel VSL control strategy which considers the driver compliance aims to improve the traffic flow and occupancy of vehicles in addition to amelioration of vehicle's travel times. The IASLD provides the advisory speed limit for each vehicle exclusively based on the vehicle's characteristics including the vehicle type, size, and safety capabilities as well as traffic and weather conditions. The proposed approach takes advantage of vehicular ad hoc network (VANET) to accelerate its performance, in the way that simulation results demonstrate the reduction of incident detection time up to 31.2% in comparison with traditional VSL strategy. The simulation results similarly indicate the improvement of traffic flow efficiency, occupancy, and travel time in different conditions.

Show MeSH
Fundamental layout of the IASLD architecture.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4066950&req=5

fig3: Fundamental layout of the IASLD architecture.

Mentions: IASLD is an enhancement of VSL systems which primarily aims to optimize the traffic flow, traffic safety, and travel time of vehicles, in highway scenarios in an innovative manner. The prominent preference of IASLD with proposed VSL systems is the essence of comprehensive multiprocessing of the circumstances which have direct effect on VSL decisions. The IASLD takes advantage of integrated framework to prepare the advisory speed limit for each vehicle exclusively in successive segments of the highway. The road condition, traffic flows, incident occurrences, vehicle's type, and vehicle's safety capabilities are the factors which have significant role in decision making of the IASLD. Another prominent feature of IASLD is taking advantage of VANET technology for its information propagation. Figure 3 illustrates general overview of IASLD performance. As it is depicted, there are sets of RSUs and loop detectors which are deployed at identical distances of the highway. Deployment of these two instruments makes the highway monitoring into several segments which require consideration of different advisory speed limits according to the governed circumstances in that particular area. In addition there are sets of mounted cameras in the middle of each monitoring area. These cameras have the responsibility of detecting the plate number of vehicles which are crossing them. The IASLD by utilizing the proposed approach in this study calculates the exclusive advisory speed limit for each vehicle crossing the camera for the following area and sends it to the vehicle when it reaches to vicinity of the RSU which is at the beginning point of the following area. The succeeding subsections deeply clarify the procedures of highway condition detection, vehicle identification, advisory speed limit calculation, and advisory speed limit propagation in IASLD.


Intelligent advisory speed limit dedication in highway using VANET.

Jalooli A, Shaghaghi E, Jabbarpour MR, Noor RM, Yeo H, Jung JJ - ScientificWorldJournal (2014)

Fundamental layout of the IASLD architecture.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4066950&req=5

fig3: Fundamental layout of the IASLD architecture.
Mentions: IASLD is an enhancement of VSL systems which primarily aims to optimize the traffic flow, traffic safety, and travel time of vehicles, in highway scenarios in an innovative manner. The prominent preference of IASLD with proposed VSL systems is the essence of comprehensive multiprocessing of the circumstances which have direct effect on VSL decisions. The IASLD takes advantage of integrated framework to prepare the advisory speed limit for each vehicle exclusively in successive segments of the highway. The road condition, traffic flows, incident occurrences, vehicle's type, and vehicle's safety capabilities are the factors which have significant role in decision making of the IASLD. Another prominent feature of IASLD is taking advantage of VANET technology for its information propagation. Figure 3 illustrates general overview of IASLD performance. As it is depicted, there are sets of RSUs and loop detectors which are deployed at identical distances of the highway. Deployment of these two instruments makes the highway monitoring into several segments which require consideration of different advisory speed limits according to the governed circumstances in that particular area. In addition there are sets of mounted cameras in the middle of each monitoring area. These cameras have the responsibility of detecting the plate number of vehicles which are crossing them. The IASLD by utilizing the proposed approach in this study calculates the exclusive advisory speed limit for each vehicle crossing the camera for the following area and sends it to the vehicle when it reaches to vicinity of the RSU which is at the beginning point of the following area. The succeeding subsections deeply clarify the procedures of highway condition detection, vehicle identification, advisory speed limit calculation, and advisory speed limit propagation in IASLD.

Bottom Line: The IASLD provides the advisory speed limit for each vehicle exclusively based on the vehicle's characteristics including the vehicle type, size, and safety capabilities as well as traffic and weather conditions.The proposed approach takes advantage of vehicular ad hoc network (VANET) to accelerate its performance, in the way that simulation results demonstrate the reduction of incident detection time up to 31.2% in comparison with traditional VSL strategy.The simulation results similarly indicate the improvement of traffic flow efficiency, occupancy, and travel time in different conditions.

View Article: PubMed Central - PubMed

Affiliation: Department of Computer System and Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia.

ABSTRACT
Variable speed limits (VSLs) as a mean for enhancing road traffic safety are studied for decades to modify the speed limit based on the prevailing road circumstances. In this study the pros and cons of VSL systems and their effects on traffic controlling efficiency are summarized. Despite the potential effectiveness of utilizing VSLs, we have witnessed that the effectiveness of this system is impacted by factors such as VSL control strategy used and the level of driver compliance. Hence, the proposed approach called Intelligent Advisory Speed Limit Dedication (IASLD) as the novel VSL control strategy which considers the driver compliance aims to improve the traffic flow and occupancy of vehicles in addition to amelioration of vehicle's travel times. The IASLD provides the advisory speed limit for each vehicle exclusively based on the vehicle's characteristics including the vehicle type, size, and safety capabilities as well as traffic and weather conditions. The proposed approach takes advantage of vehicular ad hoc network (VANET) to accelerate its performance, in the way that simulation results demonstrate the reduction of incident detection time up to 31.2% in comparison with traditional VSL strategy. The simulation results similarly indicate the improvement of traffic flow efficiency, occupancy, and travel time in different conditions.

Show MeSH