Limits...
Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices.

Szpak P - Front Plant Sci (2014)

Bottom Line: This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions.The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems.Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts.

View Article: PubMed Central - PubMed

Affiliation: Department of Anthropology, University of British Columbia Vancouver, BC, Canada.

ABSTRACT
Nitrogen isotopic studies have the potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1) agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage) and (2) animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens). The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts.

No MeSH data available.


Related in: MedlinePlus

Foliar N isotopic compositions of plants according to mycorrhizal associations (Craine et al., 2009b). Boxes represent interquantile (25–75%) ranges, bars dividing boxes represent means, vertical lines represent 95% of the data. As described in Craine et al. (2009b) data were normalized to a common temperature, precipitation, and foliar [N]. ERM, ericoid; ECM, ectomycorrhizal; AM, arbuscular; Non, non-mycorrhizal.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4066317&req=5

Figure 2: Foliar N isotopic compositions of plants according to mycorrhizal associations (Craine et al., 2009b). Boxes represent interquantile (25–75%) ranges, bars dividing boxes represent means, vertical lines represent 95% of the data. As described in Craine et al. (2009b) data were normalized to a common temperature, precipitation, and foliar [N]. ERM, ericoid; ECM, ectomycorrhizal; AM, arbuscular; Non, non-mycorrhizal.

Mentions: When plants acquire N through symbiotic relationships with mycorrhiza, this tends to decrease plant δ15N values due to the retention of isotopically heavy N by the fungi (Figure 2), although these effects vary according to the mycorrhizal type as well as local environmental conditions. Mycorrhizae are mutualistic fungi that partner with plant roots, providing plants with N (as well as other nutrients, most notably P) in exchange for photosynthates. Mycorrhizal associations are extremely important for plant communities throughout the world and most plants are dependent on mycorrhizal fungi for some portion of their N (Brundrett, 2009). The three types of mycorrhizae that are significant for this discussion are outlined below (summarized from Read, 1991; Finlay, 2008; Craine et al., 2009b; Hobbie and Agerer, 2010; Hobbie and Högberg, 2012):


Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices.

Szpak P - Front Plant Sci (2014)

Foliar N isotopic compositions of plants according to mycorrhizal associations (Craine et al., 2009b). Boxes represent interquantile (25–75%) ranges, bars dividing boxes represent means, vertical lines represent 95% of the data. As described in Craine et al. (2009b) data were normalized to a common temperature, precipitation, and foliar [N]. ERM, ericoid; ECM, ectomycorrhizal; AM, arbuscular; Non, non-mycorrhizal.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4066317&req=5

Figure 2: Foliar N isotopic compositions of plants according to mycorrhizal associations (Craine et al., 2009b). Boxes represent interquantile (25–75%) ranges, bars dividing boxes represent means, vertical lines represent 95% of the data. As described in Craine et al. (2009b) data were normalized to a common temperature, precipitation, and foliar [N]. ERM, ericoid; ECM, ectomycorrhizal; AM, arbuscular; Non, non-mycorrhizal.
Mentions: When plants acquire N through symbiotic relationships with mycorrhiza, this tends to decrease plant δ15N values due to the retention of isotopically heavy N by the fungi (Figure 2), although these effects vary according to the mycorrhizal type as well as local environmental conditions. Mycorrhizae are mutualistic fungi that partner with plant roots, providing plants with N (as well as other nutrients, most notably P) in exchange for photosynthates. Mycorrhizal associations are extremely important for plant communities throughout the world and most plants are dependent on mycorrhizal fungi for some portion of their N (Brundrett, 2009). The three types of mycorrhizae that are significant for this discussion are outlined below (summarized from Read, 1991; Finlay, 2008; Craine et al., 2009b; Hobbie and Agerer, 2010; Hobbie and Högberg, 2012):

Bottom Line: This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions.The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems.Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts.

View Article: PubMed Central - PubMed

Affiliation: Department of Anthropology, University of British Columbia Vancouver, BC, Canada.

ABSTRACT
Nitrogen isotopic studies have the potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1) agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage) and (2) animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens). The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts.

No MeSH data available.


Related in: MedlinePlus