Limits...
Attractive faces temporally modulate visual attention.

Nakamura K, Kawabata H - Front Psychol (2014)

Bottom Line: Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does.Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA.These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Keio University Tokyo, Japan.

ABSTRACT
Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation. Fourteen male faces and two female faces were successively presented for 160 ms, respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention.

No MeSH data available.


Schematic diagram of dtRSVP task. Note that T1 were attractive, neutral, or unattractive faces, while T2 were always neutral at 320, 640, and 800 ms time lags.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4061897&req=5

Figure 1: Schematic diagram of dtRSVP task. Note that T1 were attractive, neutral, or unattractive faces, while T2 were always neutral at 320, 640, and 800 ms time lags.

Mentions: In the dtRSVP task, participants were required to identify two female targets in a stream of face images presented in rapid succession (Broadbent and Broadbent, 1987). The presentation procedure is illustrated schematically in Figure 1. The dtRSVP stream began with a fixation cross that was presented for 500 ms in the center of the display. The fixation cross was followed by a rapid serial presentation of 16 face images on a gray background. In each trial, there were always two female target faces (namely, T1 for the first target, and T2 for the second target) within 14 male filler faces, each presented for 160 ms. T1 was placed fifth, sixth, or seventh in the 16 face presentation. T2 was placed second, fourth, or eighth after presentation of T1; that is, T2 was presented at lags of 2, 4, or 8 faces for T1. Accordingly, SOAs between T1 and T2 were 320 ms (Lag 2), 640 ms (Lag 4), and 1280 ms (Lag 8). In the dtRSVP task, T1 stimuli consisted of three attractiveness categories: attractive, neutral, and unattractive faces. Six faces were selected for each category, in accordance with scores by each participant in the attractiveness rating task. Mean attractiveness ratings were 0.79 ± 0.13 for attractive faces, 0.42 ± 0.11 for neutral faces, and 0.15 ± 0.11 for unattractive faces. Mean rating scores for attractive faces was significantly higher than for neutral and unattractive faces (p < 0.001 for both), and scores for neutral faces were significantly higher than for unattractive faces (p < 0.001). The T2 face was randomly selected from a pool of 42 female faces that were moderately attractive (M = 0.43 ± 0.10), but not presented as T1. The filler stimuli were randomly selected from a pool of male faces that were rated moderately attractive (M = 0.42 ± 0.11). Within a trial, the same filler stimulus was not repeated. At the end of each trial, participants were asked to identify T1 and T2 from each list containing the target face, and three distractor faces. If unsure, participants were encouraged to make their best guess. Eighteen trials were repeated for each unique lag and attractiveness category combination for an overall total of 162 trials. Trials were presented in random order. To familiarize participants with the experimental task, we started with 15 practice trials using face images never used in the dtRSVP task.


Attractive faces temporally modulate visual attention.

Nakamura K, Kawabata H - Front Psychol (2014)

Schematic diagram of dtRSVP task. Note that T1 were attractive, neutral, or unattractive faces, while T2 were always neutral at 320, 640, and 800 ms time lags.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4061897&req=5

Figure 1: Schematic diagram of dtRSVP task. Note that T1 were attractive, neutral, or unattractive faces, while T2 were always neutral at 320, 640, and 800 ms time lags.
Mentions: In the dtRSVP task, participants were required to identify two female targets in a stream of face images presented in rapid succession (Broadbent and Broadbent, 1987). The presentation procedure is illustrated schematically in Figure 1. The dtRSVP stream began with a fixation cross that was presented for 500 ms in the center of the display. The fixation cross was followed by a rapid serial presentation of 16 face images on a gray background. In each trial, there were always two female target faces (namely, T1 for the first target, and T2 for the second target) within 14 male filler faces, each presented for 160 ms. T1 was placed fifth, sixth, or seventh in the 16 face presentation. T2 was placed second, fourth, or eighth after presentation of T1; that is, T2 was presented at lags of 2, 4, or 8 faces for T1. Accordingly, SOAs between T1 and T2 were 320 ms (Lag 2), 640 ms (Lag 4), and 1280 ms (Lag 8). In the dtRSVP task, T1 stimuli consisted of three attractiveness categories: attractive, neutral, and unattractive faces. Six faces were selected for each category, in accordance with scores by each participant in the attractiveness rating task. Mean attractiveness ratings were 0.79 ± 0.13 for attractive faces, 0.42 ± 0.11 for neutral faces, and 0.15 ± 0.11 for unattractive faces. Mean rating scores for attractive faces was significantly higher than for neutral and unattractive faces (p < 0.001 for both), and scores for neutral faces were significantly higher than for unattractive faces (p < 0.001). The T2 face was randomly selected from a pool of 42 female faces that were moderately attractive (M = 0.43 ± 0.10), but not presented as T1. The filler stimuli were randomly selected from a pool of male faces that were rated moderately attractive (M = 0.42 ± 0.11). Within a trial, the same filler stimulus was not repeated. At the end of each trial, participants were asked to identify T1 and T2 from each list containing the target face, and three distractor faces. If unsure, participants were encouraged to make their best guess. Eighteen trials were repeated for each unique lag and attractiveness category combination for an overall total of 162 trials. Trials were presented in random order. To familiarize participants with the experimental task, we started with 15 practice trials using face images never used in the dtRSVP task.

Bottom Line: Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does.Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA.These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Keio University Tokyo, Japan.

ABSTRACT
Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation. Fourteen male faces and two female faces were successively presented for 160 ms, respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention.

No MeSH data available.