Limits...
From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro "model" systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system.

Corner MA - Brain Sci (2013)

Bottom Line: Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation.In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development.Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

View Article: PubMed Central - PubMed

Affiliation: Netherlands Institute for Brain Research, Amsterdam, 1071-TC, The Netherlands. m.corner@hccnet.nl.

ABSTRACT
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

No MeSH data available.


Related in: MedlinePlus

Examples of (four) different classes of more or less stereotyped neuronal firing in a dissociated rat neocortex culture recorded on a multi-electrode plate. The connecting lines indicate the sequential firing of individual spikes at the participating recording sites: experiment performed together with Dr. van Pelt, J. in 2005 at The Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4061857&req=5

brainsci-03-00800-f007: Examples of (four) different classes of more or less stereotyped neuronal firing in a dissociated rat neocortex culture recorded on a multi-electrode plate. The connecting lines indicate the sequential firing of individual spikes at the participating recording sites: experiment performed together with Dr. van Pelt, J. in 2005 at The Netherlands Institute for Brain Research, Amsterdam, The Netherlands.

Mentions: High frequency short bursts of activity, such as are also seen superimposed on the “up” states of individual delta waves during SWS, and probably reflecting “flip-flop oscillations mediated by fast inhibitory synaptic feedback [25,50,57], are another feature of SWS that has been reproduced by in vitro models [58,59]. Although a high degree of burst reproducibility is often observed with respect to sequential action potential discharge patterns, as is also the case in situ during slow-wave sleep [60], the detailed patterning of polyneuronal firing appears to fall into a number of distinct classes [61,62] (Figure 7). The large degree of burst variability with respect to frequency, duration, firing intensity and regularity, within as well as between different cultures [63], is comparable to that reported for organotypic brainstem cultures [11] (Figure 4 and Figure 5). Average network firing rate profiles, on the other hand, can be highly constant for days at a time, but also show gradual developmental trends over the course of weeks [64].


From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro "model" systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system.

Corner MA - Brain Sci (2013)

Examples of (four) different classes of more or less stereotyped neuronal firing in a dissociated rat neocortex culture recorded on a multi-electrode plate. The connecting lines indicate the sequential firing of individual spikes at the participating recording sites: experiment performed together with Dr. van Pelt, J. in 2005 at The Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4061857&req=5

brainsci-03-00800-f007: Examples of (four) different classes of more or less stereotyped neuronal firing in a dissociated rat neocortex culture recorded on a multi-electrode plate. The connecting lines indicate the sequential firing of individual spikes at the participating recording sites: experiment performed together with Dr. van Pelt, J. in 2005 at The Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
Mentions: High frequency short bursts of activity, such as are also seen superimposed on the “up” states of individual delta waves during SWS, and probably reflecting “flip-flop oscillations mediated by fast inhibitory synaptic feedback [25,50,57], are another feature of SWS that has been reproduced by in vitro models [58,59]. Although a high degree of burst reproducibility is often observed with respect to sequential action potential discharge patterns, as is also the case in situ during slow-wave sleep [60], the detailed patterning of polyneuronal firing appears to fall into a number of distinct classes [61,62] (Figure 7). The large degree of burst variability with respect to frequency, duration, firing intensity and regularity, within as well as between different cultures [63], is comparable to that reported for organotypic brainstem cultures [11] (Figure 4 and Figure 5). Average network firing rate profiles, on the other hand, can be highly constant for days at a time, but also show gradual developmental trends over the course of weeks [64].

Bottom Line: Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation.In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development.Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

View Article: PubMed Central - PubMed

Affiliation: Netherlands Institute for Brain Research, Amsterdam, 1071-TC, The Netherlands. m.corner@hccnet.nl.

ABSTRACT
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

No MeSH data available.


Related in: MedlinePlus