Limits...
Preliminary study of the Southampton Hand Assessment Procedure for Children and its reliability.

Vasluian E, Bongers RM, Reinders-Messelink HA, Dijkstra PU, van der Sluis CK - BMC Musculoskelet Disord (2014)

Bottom Line: The RCs of a single assessor did not exceed 75% in 17/26 SHAP-C tasks, displaying a relatively good intra-rater reliability, whereas the RCs for the inter-rater reliability exceeded 75% in 22/26 SHAP-C tasks, thus displaying poor reliability.In this first study that adjusted the SHAP for pediatric use, we found that all SHAP-C objects and tasks could be performed by children.The intra-rater reliability was better than the inter-rater reliability.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. e.golea.vasluian@umcg.nl.

ABSTRACT

Background: The Southampton Hand Assessment Procedure (SHAP) is currently used in the adult population for evaluating the functionality of impaired or prosthetic hands. The SHAP cannot be used for children because of the relatively larger size of the objects used to perform SHAP tasks and unknown clinimetric properties. The aims of this study were to adapt the SHAP for use in children (SHAP-C), to determine norm values for the SHAP-C, and to analyze the reliability of the SHAP-C.

Methods: The SHAP-C was adapted based on the SHAP protocol. Some objects were downsized, and the timing of tasks was performed by the rater instead of the participant. Intra- and inter-rater reliability were assessed in 24 children (5 [0.54] y/o) with unimpaired hands. The repeatability coefficients (RCs) were calculated. An RC ≤ 75% of the mean SHAP-C task values was considered good reliability.

Results: Participants were able to perform all SHAP-C tasks. The means of the SHAP-C tasks ranged from 0.75 to 1.21 seconds for abstract objects and from 0.64-19.13 seconds for activities of daily living. The RCs of a single assessor did not exceed 75% in 17/26 SHAP-C tasks, displaying a relatively good intra-rater reliability, whereas the RCs for the inter-rater reliability exceeded 75% in 22/26 SHAP-C tasks, thus displaying poor reliability.

Conclusion: In this first study that adjusted the SHAP for pediatric use, we found that all SHAP-C objects and tasks could be performed by children. The intra-rater reliability was better than the inter-rater reliability. Although the SHAP-C appears to be a promising instrument, the protocol requires further modifications to provide reliable measurements in children.

Show MeSH
Prosthetic simulator.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4061771&req=5

Figure 1: Prosthetic simulator.

Mentions: In the process of establishing the SHAP-C, we focused on keeping the alterations of the original SHAP to a minimum. Therefore, a systematic approach was used for designing the SHAP-C. (1) First, several objects were downsized (Table 1) to allow grasping with both pediatric unimpaired and prosthetic hands, as the SHAP was designed for prosthetic hands as well (maximum opening of the prosthetic hand, distance from thumb to index finger is 5 cm [myoelectric prosthesis, Electrohand 2000]). Object sizes and the original SHAP protocol [27] were tested in a pilot study on eight unimpaired children (4–7 y/o, three girls and five boys). The children were recruited from a local school. They performed with a normal hand or with a myoelectric prosthesis adapted for the use in unimpaired children (a prosthetic simulator, Figure 1). (2) After that pilot study, it was decided that the assessor will time the tasks instead of the child as stated in the standard SHAP protocol because the children often forgot to start and stop the timer. Timing was started at the moment of opening the hand to grasp the object and stopped when the object was released. Furthermore, all of the objects (including the resized objects) and the changed SHAP protocol were tested in three other children (5 y/o), using the myoelectric simulator, to evaluate the feasibility of the SHAP-C protocol in pediatric prosthetic hands as well. (3) Based on the observations from the children using the prosthetic simulator, the starting position of a few objects was slightly changed to facilitate the gripping of the objects in prosthesis users (Table 1).


Preliminary study of the Southampton Hand Assessment Procedure for Children and its reliability.

Vasluian E, Bongers RM, Reinders-Messelink HA, Dijkstra PU, van der Sluis CK - BMC Musculoskelet Disord (2014)

Prosthetic simulator.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4061771&req=5

Figure 1: Prosthetic simulator.
Mentions: In the process of establishing the SHAP-C, we focused on keeping the alterations of the original SHAP to a minimum. Therefore, a systematic approach was used for designing the SHAP-C. (1) First, several objects were downsized (Table 1) to allow grasping with both pediatric unimpaired and prosthetic hands, as the SHAP was designed for prosthetic hands as well (maximum opening of the prosthetic hand, distance from thumb to index finger is 5 cm [myoelectric prosthesis, Electrohand 2000]). Object sizes and the original SHAP protocol [27] were tested in a pilot study on eight unimpaired children (4–7 y/o, three girls and five boys). The children were recruited from a local school. They performed with a normal hand or with a myoelectric prosthesis adapted for the use in unimpaired children (a prosthetic simulator, Figure 1). (2) After that pilot study, it was decided that the assessor will time the tasks instead of the child as stated in the standard SHAP protocol because the children often forgot to start and stop the timer. Timing was started at the moment of opening the hand to grasp the object and stopped when the object was released. Furthermore, all of the objects (including the resized objects) and the changed SHAP protocol were tested in three other children (5 y/o), using the myoelectric simulator, to evaluate the feasibility of the SHAP-C protocol in pediatric prosthetic hands as well. (3) Based on the observations from the children using the prosthetic simulator, the starting position of a few objects was slightly changed to facilitate the gripping of the objects in prosthesis users (Table 1).

Bottom Line: The RCs of a single assessor did not exceed 75% in 17/26 SHAP-C tasks, displaying a relatively good intra-rater reliability, whereas the RCs for the inter-rater reliability exceeded 75% in 22/26 SHAP-C tasks, thus displaying poor reliability.In this first study that adjusted the SHAP for pediatric use, we found that all SHAP-C objects and tasks could be performed by children.The intra-rater reliability was better than the inter-rater reliability.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. e.golea.vasluian@umcg.nl.

ABSTRACT

Background: The Southampton Hand Assessment Procedure (SHAP) is currently used in the adult population for evaluating the functionality of impaired or prosthetic hands. The SHAP cannot be used for children because of the relatively larger size of the objects used to perform SHAP tasks and unknown clinimetric properties. The aims of this study were to adapt the SHAP for use in children (SHAP-C), to determine norm values for the SHAP-C, and to analyze the reliability of the SHAP-C.

Methods: The SHAP-C was adapted based on the SHAP protocol. Some objects were downsized, and the timing of tasks was performed by the rater instead of the participant. Intra- and inter-rater reliability were assessed in 24 children (5 [0.54] y/o) with unimpaired hands. The repeatability coefficients (RCs) were calculated. An RC ≤ 75% of the mean SHAP-C task values was considered good reliability.

Results: Participants were able to perform all SHAP-C tasks. The means of the SHAP-C tasks ranged from 0.75 to 1.21 seconds for abstract objects and from 0.64-19.13 seconds for activities of daily living. The RCs of a single assessor did not exceed 75% in 17/26 SHAP-C tasks, displaying a relatively good intra-rater reliability, whereas the RCs for the inter-rater reliability exceeded 75% in 22/26 SHAP-C tasks, thus displaying poor reliability.

Conclusion: In this first study that adjusted the SHAP for pediatric use, we found that all SHAP-C objects and tasks could be performed by children. The intra-rater reliability was better than the inter-rater reliability. Although the SHAP-C appears to be a promising instrument, the protocol requires further modifications to provide reliable measurements in children.

Show MeSH