Limits...
Results of diplopia and strabismus in patients with severe thyroid ophthalmopathy after orbital decompression.

Roncevic R, Savkovic Z, Roncevic D - Indian J Ophthalmol (2014)

Bottom Line: All patients showed a significant reduction of exophthalmos [5-11 mm, 7.2 mm on average], reduction of intraocular pressure, marked improvement in ocular muscle function as well as considerable reduction in or disappearance of subjective symptoms.There was an improvement in vision in 68% patients who had impaired vision before the operation.Less evident relapse of exophthalmos was recorded in 3 cases only and only one patient required unilateral reoperation.

View Article: PubMed Central - PubMed

Affiliation: Department of Ophthalmology, Revida Hospital, Belgrade, Serbia.

ABSTRACT

Purpose: It has been frequently stated that the orbital decompression, in patients with thyroid ophthalmopathy, does not usually improve extraocular muscles function and that after the operation there is often a deterioration of these functions. The purpose of this article is evaluation of extraocular muscles function after applying personal method of 3 wall orbital decompression.

Materials and methods: Retrospective review of case records of 119 patients with severe thyroid ophthalmopathy seen and treated by the author between December 1986 and December 2010. All patents underwent 3 wall orbital decompression combined with removal of the periorbital, intraorbital and retrobulbar fat. Correction of coexistent eyelid retraction and deformities were also performed.

Results: Comparison of preoperative and postoperative results was conducted in 65 patients three months after 3 wall decompression. All patients showed a significant reduction of exophthalmos [5-11 mm, 7.2 mm on average], reduction of intraocular pressure, marked improvement in ocular muscle function as well as considerable reduction in or disappearance of subjective symptoms. There were no cases of subsequent impairment of ocular motility. Strabismus surgery was performed in 6 patients with residual diplopia. There was an improvement in vision in 68% patients who had impaired vision before the operation. Less evident relapse of exophthalmos was recorded in 3 cases only and only one patient required unilateral reoperation.

Conclusion: It can be concluded that this method of orbital decompression is logical, based on an understanding of the pathology, has less complication rates, is relatively easy to perform, gives very good functional and aesthetic long term results and allows rapid recovery.

Show MeSH

Related in: MedlinePlus

The approaches to the orbital walls are marked on the eyelids. The surgical bony defect is marked on the orbital walls
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4061660&req=5

Figure 1: The approaches to the orbital walls are marked on the eyelids. The surgical bony defect is marked on the orbital walls

Mentions: From December 1986 to December 2010, 119 patients with severe TO [exophthalmos 24-33 mm] were treated, by the author, surgically using personal method of orbital decompression along with correction of the eyelid retraction and deformities. There were 91 women of the ages 17 to 73 years and 28 men of ages 22 to 53. Decompression of the orbits was performed after complete endocrine and ophthalmic assessment and treatment. The procedure for the correction begins within the upper eyelid [Fig. 1]. As for a blepharoplasty, the excision of the excessive eyelid skin and swollen subcutaneous tissue is performed and the eyelid fat and the fat of upper part of orbit are removed. In order to obtain the correction of upper eyelid retraction, the central part of the aponeurosis of the levator muscle and Muller's muscle are excised. Following this, an blepharoplasty, subciliary incision is made in the lower eyelid, 2-3 mm below the eyelid margin, and through this, the floor and lateral wall of the orbit are explored and the periorbital and intraorbital, peribulbar fat is removed, as much as possible. Using a small chisel and hemostat, the posterior, retrobulbar part of the orbital floor and the lateral orbital wall, except lateral orbital margin, is removed [Fig. 1]. The bony bridge between the floor and lateral orbital wall defect is removed to produce a large continuous orbitectomy. The size of the defect is related to the severity of the ophthalmopathy and exophthalmos. An attempt should be made to remove the bone from the orbital floor as close to the orbital apex as possible. The anterior, bulbar part of the orbital floor must remain intact. The infraorbiral nerve is protected during the floor osteotomy. This is achieved by removal of bone on either side of nerve and then freeing the nerve. If the bone bridge in the infraorbital nerve region is left, the effect of decompression is significantly diminished. If possible, the sinus mucosa should not be opened. [Small perforations of the sinus mucosa are frequently unavoidable, but are of no importance]. Wide incisions or excisions of perorbital periosteum should be made in several sites. Following this, through an incision made over the medial margin of the orbit, the medial orbital wall is explored and its ethmoidal part is removed [Fig. 1]. This medial wall bone defect should be in continuity with orbital floor defect, i.e., retrobulbar part of orbital strut should be removed. During the medial wall ostectomy, the bone at the region of the upper border of ethmoid bone must be intact. The bone defect begins about 3 mm below the ethmoidal foramens. This is done in order to prevent injury and bleeding of the ethmoidal arteries and to prevent the breaking into scull cavity and damage dura. Using this same approach, the retobulbar space is explored, and again, as much as possible, retrobulbar fat is removed with a hemostat. The periorbital periosteum in this region should be excised or incised at several sites. In the patients with distended, hypotonic and ptotic lower eyelids it is necessary to perform the lateral canthopexy in order to correct these deformities. In some patients it is necessary to perform shortening of the lower eyelid by excision of central part of eyelid rim, about 3 mm wide. After establishment of satisfactory hemostasis, a thin vacuum drain is inserted into retrobulbar space, and the incisions on eyelids are closed. At the beginning of the operation, temporary blepharorrhaphy should be performed using two single sutures. These sutures are removed 5 to7 days after the operation. Postoperatively the eyesight is controlled through central part of the eyelids, between the two sutures. In all cases, except the 3 cases of unilateral disease, the operation was performed on both orbits in a single operation. After the operation, in different time intervals, in all patients the subjective symptoms were observed, as well as the changes of eyelids, conjunctiva and cornea recorded. Degree of exophthalmos by Hertel, the function of extraocular muscles, i.e., diplopia by Hess-Lancaster test, intraocular pressure, the change in the disc, i.e., the changes in vision and field of vision, as well as the thickening and elongation of extraocular muscles, by CT or MRI scan or echography, done.


Results of diplopia and strabismus in patients with severe thyroid ophthalmopathy after orbital decompression.

Roncevic R, Savkovic Z, Roncevic D - Indian J Ophthalmol (2014)

The approaches to the orbital walls are marked on the eyelids. The surgical bony defect is marked on the orbital walls
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4061660&req=5

Figure 1: The approaches to the orbital walls are marked on the eyelids. The surgical bony defect is marked on the orbital walls
Mentions: From December 1986 to December 2010, 119 patients with severe TO [exophthalmos 24-33 mm] were treated, by the author, surgically using personal method of orbital decompression along with correction of the eyelid retraction and deformities. There were 91 women of the ages 17 to 73 years and 28 men of ages 22 to 53. Decompression of the orbits was performed after complete endocrine and ophthalmic assessment and treatment. The procedure for the correction begins within the upper eyelid [Fig. 1]. As for a blepharoplasty, the excision of the excessive eyelid skin and swollen subcutaneous tissue is performed and the eyelid fat and the fat of upper part of orbit are removed. In order to obtain the correction of upper eyelid retraction, the central part of the aponeurosis of the levator muscle and Muller's muscle are excised. Following this, an blepharoplasty, subciliary incision is made in the lower eyelid, 2-3 mm below the eyelid margin, and through this, the floor and lateral wall of the orbit are explored and the periorbital and intraorbital, peribulbar fat is removed, as much as possible. Using a small chisel and hemostat, the posterior, retrobulbar part of the orbital floor and the lateral orbital wall, except lateral orbital margin, is removed [Fig. 1]. The bony bridge between the floor and lateral orbital wall defect is removed to produce a large continuous orbitectomy. The size of the defect is related to the severity of the ophthalmopathy and exophthalmos. An attempt should be made to remove the bone from the orbital floor as close to the orbital apex as possible. The anterior, bulbar part of the orbital floor must remain intact. The infraorbiral nerve is protected during the floor osteotomy. This is achieved by removal of bone on either side of nerve and then freeing the nerve. If the bone bridge in the infraorbital nerve region is left, the effect of decompression is significantly diminished. If possible, the sinus mucosa should not be opened. [Small perforations of the sinus mucosa are frequently unavoidable, but are of no importance]. Wide incisions or excisions of perorbital periosteum should be made in several sites. Following this, through an incision made over the medial margin of the orbit, the medial orbital wall is explored and its ethmoidal part is removed [Fig. 1]. This medial wall bone defect should be in continuity with orbital floor defect, i.e., retrobulbar part of orbital strut should be removed. During the medial wall ostectomy, the bone at the region of the upper border of ethmoid bone must be intact. The bone defect begins about 3 mm below the ethmoidal foramens. This is done in order to prevent injury and bleeding of the ethmoidal arteries and to prevent the breaking into scull cavity and damage dura. Using this same approach, the retobulbar space is explored, and again, as much as possible, retrobulbar fat is removed with a hemostat. The periorbital periosteum in this region should be excised or incised at several sites. In the patients with distended, hypotonic and ptotic lower eyelids it is necessary to perform the lateral canthopexy in order to correct these deformities. In some patients it is necessary to perform shortening of the lower eyelid by excision of central part of eyelid rim, about 3 mm wide. After establishment of satisfactory hemostasis, a thin vacuum drain is inserted into retrobulbar space, and the incisions on eyelids are closed. At the beginning of the operation, temporary blepharorrhaphy should be performed using two single sutures. These sutures are removed 5 to7 days after the operation. Postoperatively the eyesight is controlled through central part of the eyelids, between the two sutures. In all cases, except the 3 cases of unilateral disease, the operation was performed on both orbits in a single operation. After the operation, in different time intervals, in all patients the subjective symptoms were observed, as well as the changes of eyelids, conjunctiva and cornea recorded. Degree of exophthalmos by Hertel, the function of extraocular muscles, i.e., diplopia by Hess-Lancaster test, intraocular pressure, the change in the disc, i.e., the changes in vision and field of vision, as well as the thickening and elongation of extraocular muscles, by CT or MRI scan or echography, done.

Bottom Line: All patients showed a significant reduction of exophthalmos [5-11 mm, 7.2 mm on average], reduction of intraocular pressure, marked improvement in ocular muscle function as well as considerable reduction in or disappearance of subjective symptoms.There was an improvement in vision in 68% patients who had impaired vision before the operation.Less evident relapse of exophthalmos was recorded in 3 cases only and only one patient required unilateral reoperation.

View Article: PubMed Central - PubMed

Affiliation: Department of Ophthalmology, Revida Hospital, Belgrade, Serbia.

ABSTRACT

Purpose: It has been frequently stated that the orbital decompression, in patients with thyroid ophthalmopathy, does not usually improve extraocular muscles function and that after the operation there is often a deterioration of these functions. The purpose of this article is evaluation of extraocular muscles function after applying personal method of 3 wall orbital decompression.

Materials and methods: Retrospective review of case records of 119 patients with severe thyroid ophthalmopathy seen and treated by the author between December 1986 and December 2010. All patents underwent 3 wall orbital decompression combined with removal of the periorbital, intraorbital and retrobulbar fat. Correction of coexistent eyelid retraction and deformities were also performed.

Results: Comparison of preoperative and postoperative results was conducted in 65 patients three months after 3 wall decompression. All patients showed a significant reduction of exophthalmos [5-11 mm, 7.2 mm on average], reduction of intraocular pressure, marked improvement in ocular muscle function as well as considerable reduction in or disappearance of subjective symptoms. There were no cases of subsequent impairment of ocular motility. Strabismus surgery was performed in 6 patients with residual diplopia. There was an improvement in vision in 68% patients who had impaired vision before the operation. Less evident relapse of exophthalmos was recorded in 3 cases only and only one patient required unilateral reoperation.

Conclusion: It can be concluded that this method of orbital decompression is logical, based on an understanding of the pathology, has less complication rates, is relatively easy to perform, gives very good functional and aesthetic long term results and allows rapid recovery.

Show MeSH
Related in: MedlinePlus