Limits...
Functional specialization of the left ventral parietal cortex in working memory.

Langel J, Hakun J, Zhu DC, Ravizza SM - Front Hum Neurosci (2014)

Bottom Line: However, many attentional tasks elicit activity in the VPC bilaterally.These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection.The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

View Article: PubMed Central - PubMed

Affiliation: Neuroscience Program, Michigan State University East Lansing, MI, USA.

ABSTRACT
The function of the ventral parietal cortex (VPC) is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

No MeSH data available.


Related in: MedlinePlus

Average accuracy and reaction time (RT) for the oddball [(A,B) ± SEM] and working memory [WM; (C,D) ± SEM] task. For the oddball task, there were no differences in detecting verbal or object targets in accuracy (A) or RT (B). For the WM task, participants had both higher performance (C) and faster RT (D) for verbal trials. *Asterisks indicate a significant difference between the verbal and object trials of the WM task at p < 0.05. For better visualization of the differences in accuracy and RT, the y-axis starts a higher value in (A,C,D), this is represented by the jagged line in these graphs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4061583&req=5

Figure 2: Average accuracy and reaction time (RT) for the oddball [(A,B) ± SEM] and working memory [WM; (C,D) ± SEM] task. For the oddball task, there were no differences in detecting verbal or object targets in accuracy (A) or RT (B). For the WM task, participants had both higher performance (C) and faster RT (D) for verbal trials. *Asterisks indicate a significant difference between the verbal and object trials of the WM task at p < 0.05. For better visualization of the differences in accuracy and RT, the y-axis starts a higher value in (A,C,D), this is represented by the jagged line in these graphs.

Mentions: Participants were highly accurate at detecting novel targets (mean = 95.5%). There were no differences in detecting verbal or object targets in accuracy [t(15) = 0.92, p = 0.37) or RT [t(15) = 1.22, p = 0.24; Figures 2A,B). In the WM task, participants performed better on verbal trials compared to object trials. Accuracy was greater [t(16) = 2.73, p < 0.05], and reaction time (RT) was faster [t(16) = 3.7, p < 0.05) for the verbal condition compared to the object condition (Figures 2C,D).


Functional specialization of the left ventral parietal cortex in working memory.

Langel J, Hakun J, Zhu DC, Ravizza SM - Front Hum Neurosci (2014)

Average accuracy and reaction time (RT) for the oddball [(A,B) ± SEM] and working memory [WM; (C,D) ± SEM] task. For the oddball task, there were no differences in detecting verbal or object targets in accuracy (A) or RT (B). For the WM task, participants had both higher performance (C) and faster RT (D) for verbal trials. *Asterisks indicate a significant difference between the verbal and object trials of the WM task at p < 0.05. For better visualization of the differences in accuracy and RT, the y-axis starts a higher value in (A,C,D), this is represented by the jagged line in these graphs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4061583&req=5

Figure 2: Average accuracy and reaction time (RT) for the oddball [(A,B) ± SEM] and working memory [WM; (C,D) ± SEM] task. For the oddball task, there were no differences in detecting verbal or object targets in accuracy (A) or RT (B). For the WM task, participants had both higher performance (C) and faster RT (D) for verbal trials. *Asterisks indicate a significant difference between the verbal and object trials of the WM task at p < 0.05. For better visualization of the differences in accuracy and RT, the y-axis starts a higher value in (A,C,D), this is represented by the jagged line in these graphs.
Mentions: Participants were highly accurate at detecting novel targets (mean = 95.5%). There were no differences in detecting verbal or object targets in accuracy [t(15) = 0.92, p = 0.37) or RT [t(15) = 1.22, p = 0.24; Figures 2A,B). In the WM task, participants performed better on verbal trials compared to object trials. Accuracy was greater [t(16) = 2.73, p < 0.05], and reaction time (RT) was faster [t(16) = 3.7, p < 0.05) for the verbal condition compared to the object condition (Figures 2C,D).

Bottom Line: However, many attentional tasks elicit activity in the VPC bilaterally.These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection.The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

View Article: PubMed Central - PubMed

Affiliation: Neuroscience Program, Michigan State University East Lansing, MI, USA.

ABSTRACT
The function of the ventral parietal cortex (VPC) is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

No MeSH data available.


Related in: MedlinePlus