Limits...
Neuromagnetic vistas into typical and atypical development of frontal lobe functions.

Taylor MJ, Doesburg SM, Pang EW - Front Hum Neurosci (2014)

Bottom Line: There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity.The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks.We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.

View Article: PubMed Central - PubMed

Affiliation: Department of Diagnostic Imaging, Hospital for Sick Children , Toronto, ON , Canada ; Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute , Toronto, ON , Canada ; Department of Medical Imaging, University of Toronto , Toronto, ON , Canada ; Department of Psychology, University of Toronto , Toronto, ON , Canada ; Department of Paediatrics, University of Toronto , Toronto, ON , Canada.

ABSTRACT
The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG) is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups - children with autism spectrum disorder and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.

No MeSH data available.


Related in: MedlinePlus

Time courses of activations used in magnitude analyses for each speech production condition. Circles indicate neural locations where statistically significant differences were seen in the peak magnitude between children with autism (blue line) and control children (red line). These data for Figures 6 and 7 were analyzed with synthetic aperture magnetometry beamforming (Robinson and Vrba, 1999; Vrba and Robinson, 2001), and peak activation in regions of interest (based on nine a priori regions identified from canonical expressive language areas, plus each homologous region) were computed and averaged by group, and then the magnitude (amplitudes) and latency analyzed for each participant and submitted to paired t-tests and corrected for multiple comparisons.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4061489&req=5

Figure 6: Time courses of activations used in magnitude analyses for each speech production condition. Circles indicate neural locations where statistically significant differences were seen in the peak magnitude between children with autism (blue line) and control children (red line). These data for Figures 6 and 7 were analyzed with synthetic aperture magnetometry beamforming (Robinson and Vrba, 1999; Vrba and Robinson, 2001), and peak activation in regions of interest (based on nine a priori regions identified from canonical expressive language areas, plus each homologous region) were computed and averaged by group, and then the magnitude (amplitudes) and latency analyzed for each participant and submitted to paired t-tests and corrected for multiple comparisons.

Mentions: Figures 6 and 7 show the time courses where significant differences were observed in magnitude and latency, respectively, between the ASD and control groups, in three frontal areas and one temporal region (Pang et al., 2013). In the simple oromotor task, the children with ASD showed greater activation in right hemisphere motor control areas (BA 4) and the middle frontal gyrus, a motor planning area (BA 9), together with delayed activation in right hemisphere motor planning areas (BA 6). In the phoneme production task, the children with ASD showed delayed activation in left frontal language control areas (BA 47). In the sequencing task, the ASD group showed greater activation in right hemisphere motor control (BA 4) and right hemisphere sequencing (BA 22) areas. As well, for the sequencing task, the children with ASD showed higher and delayed activations in the left insula (BA 13), an area known to be involved in sensorimotor integration (Hesling et al., 2005).


Neuromagnetic vistas into typical and atypical development of frontal lobe functions.

Taylor MJ, Doesburg SM, Pang EW - Front Hum Neurosci (2014)

Time courses of activations used in magnitude analyses for each speech production condition. Circles indicate neural locations where statistically significant differences were seen in the peak magnitude between children with autism (blue line) and control children (red line). These data for Figures 6 and 7 were analyzed with synthetic aperture magnetometry beamforming (Robinson and Vrba, 1999; Vrba and Robinson, 2001), and peak activation in regions of interest (based on nine a priori regions identified from canonical expressive language areas, plus each homologous region) were computed and averaged by group, and then the magnitude (amplitudes) and latency analyzed for each participant and submitted to paired t-tests and corrected for multiple comparisons.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4061489&req=5

Figure 6: Time courses of activations used in magnitude analyses for each speech production condition. Circles indicate neural locations where statistically significant differences were seen in the peak magnitude between children with autism (blue line) and control children (red line). These data for Figures 6 and 7 were analyzed with synthetic aperture magnetometry beamforming (Robinson and Vrba, 1999; Vrba and Robinson, 2001), and peak activation in regions of interest (based on nine a priori regions identified from canonical expressive language areas, plus each homologous region) were computed and averaged by group, and then the magnitude (amplitudes) and latency analyzed for each participant and submitted to paired t-tests and corrected for multiple comparisons.
Mentions: Figures 6 and 7 show the time courses where significant differences were observed in magnitude and latency, respectively, between the ASD and control groups, in three frontal areas and one temporal region (Pang et al., 2013). In the simple oromotor task, the children with ASD showed greater activation in right hemisphere motor control areas (BA 4) and the middle frontal gyrus, a motor planning area (BA 9), together with delayed activation in right hemisphere motor planning areas (BA 6). In the phoneme production task, the children with ASD showed delayed activation in left frontal language control areas (BA 47). In the sequencing task, the ASD group showed greater activation in right hemisphere motor control (BA 4) and right hemisphere sequencing (BA 22) areas. As well, for the sequencing task, the children with ASD showed higher and delayed activations in the left insula (BA 13), an area known to be involved in sensorimotor integration (Hesling et al., 2005).

Bottom Line: There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity.The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks.We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.

View Article: PubMed Central - PubMed

Affiliation: Department of Diagnostic Imaging, Hospital for Sick Children , Toronto, ON , Canada ; Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute , Toronto, ON , Canada ; Department of Medical Imaging, University of Toronto , Toronto, ON , Canada ; Department of Psychology, University of Toronto , Toronto, ON , Canada ; Department of Paediatrics, University of Toronto , Toronto, ON , Canada.

ABSTRACT
The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG) is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups - children with autism spectrum disorder and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.

No MeSH data available.


Related in: MedlinePlus