Limits...
Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

Tsunoda T, Kachi N, Suzuki J - PLoS ONE (2014)

Bottom Line: The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment).Plant biomass in free treatment was as low as in top treatment.In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.

ABSTRACT
We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

Show MeSH

Related in: MedlinePlus

Mean relative soil moisture (± SE).(A) heterogeneous supply treatments; (B) homogeneous supply treatments; Top, middle, bottom: top, middle, and bottom zone treatments, respectively. Large, large water volume supply; Small, small volume supply. The soil moisture content was larger with a large water volume than a small volume. The soil moisture content in the bottom zone was the largest, and that in the top zone the smallest. The temporal variability in soil moisture content under heterogeneous water-supply conditions was larger than that under homogeneous conditions.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4061129&req=5

pone-0100437-g001: Mean relative soil moisture (± SE).(A) heterogeneous supply treatments; (B) homogeneous supply treatments; Top, middle, bottom: top, middle, and bottom zone treatments, respectively. Large, large water volume supply; Small, small volume supply. The soil moisture content was larger with a large water volume than a small volume. The soil moisture content in the bottom zone was the largest, and that in the top zone the smallest. The temporal variability in soil moisture content under heterogeneous water-supply conditions was larger than that under homogeneous conditions.

Mentions: The mean relative soil moisture content was larger under a large water volume than a small volume (Figure 1, Table 2). The mean relative soil moisture content in the bottom zone was the largest, and that in the top zone was the smallest (Figure 1; Table 2).


Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

Tsunoda T, Kachi N, Suzuki J - PLoS ONE (2014)

Mean relative soil moisture (± SE).(A) heterogeneous supply treatments; (B) homogeneous supply treatments; Top, middle, bottom: top, middle, and bottom zone treatments, respectively. Large, large water volume supply; Small, small volume supply. The soil moisture content was larger with a large water volume than a small volume. The soil moisture content in the bottom zone was the largest, and that in the top zone the smallest. The temporal variability in soil moisture content under heterogeneous water-supply conditions was larger than that under homogeneous conditions.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4061129&req=5

pone-0100437-g001: Mean relative soil moisture (± SE).(A) heterogeneous supply treatments; (B) homogeneous supply treatments; Top, middle, bottom: top, middle, and bottom zone treatments, respectively. Large, large water volume supply; Small, small volume supply. The soil moisture content was larger with a large water volume than a small volume. The soil moisture content in the bottom zone was the largest, and that in the top zone the smallest. The temporal variability in soil moisture content under heterogeneous water-supply conditions was larger than that under homogeneous conditions.
Mentions: The mean relative soil moisture content was larger under a large water volume than a small volume (Figure 1, Table 2). The mean relative soil moisture content in the bottom zone was the largest, and that in the top zone was the smallest (Figure 1; Table 2).

Bottom Line: The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment).Plant biomass in free treatment was as low as in top treatment.In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.

ABSTRACT
We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

Show MeSH
Related in: MedlinePlus