Limits...
Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions.

Meyer JL, Paul VJ, Teplitski M - PLoS ONE (2014)

Bottom Line: These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases.Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies.The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

View Article: PubMed Central - PubMed

Affiliation: Soil and Water Science Department, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, Florida, United States of America.

ABSTRACT
Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

Show MeSH
Positive and negative species correlations in Porites astreoides microbiomes.Significant correlations (p≤0.05) between OTUs (Operational Taxonomic Units) in Porites astreoides microbiomes, as determined by variance of log-ratios with 100 iterations. Node size is indicative of the relative abundance of the OTU in the entire dataset.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4061089&req=5

pone-0100316-g004: Positive and negative species correlations in Porites astreoides microbiomes.Significant correlations (p≤0.05) between OTUs (Operational Taxonomic Units) in Porites astreoides microbiomes, as determined by variance of log-ratios with 100 iterations. Node size is indicative of the relative abundance of the OTU in the entire dataset.

Mentions: Significant species correlations revealed which taxa occurred together more often than expected by chance alone (positive interactions/co-occurrence) and which occurred less often than expected (negative interactions/exclusion). Both positive and negative species correlations were detected between OTUs in the Porites microbiomes (Fig. 4). A total of 98 significant negative species correlations were detected, while only 62 significant positive correlations were detected (p<0.05 or p = 0.05). Negative correlations were detected between each of the seven most abundant (of ten) Endozoicomonas OTUs (Fig. 4), and the relative proportions of the dominant Endozoicomonas OTUs were strongly conserved across disease state and sampling month (Fig. S2). Significant negative correlations were also detected between Endozoicomonas and several minor members of the microbial community, including five OTUs assigned to three genera within the Vibrionaceae. In contrast, negative correlations were not detected between Endozoicomonas and the most abundant genera in Cluster 1 samples. Rather, significant positive correlations were detected between eight of the ten Endozoicomonas OTUs and Alternaria, Weeksella, Pseudoxanthomonas, Stenotrophomonas, and Tepidimonas (Fig. 4). In addition, the groups dominant in Cluster 1 samples had significant positive correlations with the five Vibrionaceae OTUs.


Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions.

Meyer JL, Paul VJ, Teplitski M - PLoS ONE (2014)

Positive and negative species correlations in Porites astreoides microbiomes.Significant correlations (p≤0.05) between OTUs (Operational Taxonomic Units) in Porites astreoides microbiomes, as determined by variance of log-ratios with 100 iterations. Node size is indicative of the relative abundance of the OTU in the entire dataset.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4061089&req=5

pone-0100316-g004: Positive and negative species correlations in Porites astreoides microbiomes.Significant correlations (p≤0.05) between OTUs (Operational Taxonomic Units) in Porites astreoides microbiomes, as determined by variance of log-ratios with 100 iterations. Node size is indicative of the relative abundance of the OTU in the entire dataset.
Mentions: Significant species correlations revealed which taxa occurred together more often than expected by chance alone (positive interactions/co-occurrence) and which occurred less often than expected (negative interactions/exclusion). Both positive and negative species correlations were detected between OTUs in the Porites microbiomes (Fig. 4). A total of 98 significant negative species correlations were detected, while only 62 significant positive correlations were detected (p<0.05 or p = 0.05). Negative correlations were detected between each of the seven most abundant (of ten) Endozoicomonas OTUs (Fig. 4), and the relative proportions of the dominant Endozoicomonas OTUs were strongly conserved across disease state and sampling month (Fig. S2). Significant negative correlations were also detected between Endozoicomonas and several minor members of the microbial community, including five OTUs assigned to three genera within the Vibrionaceae. In contrast, negative correlations were not detected between Endozoicomonas and the most abundant genera in Cluster 1 samples. Rather, significant positive correlations were detected between eight of the ten Endozoicomonas OTUs and Alternaria, Weeksella, Pseudoxanthomonas, Stenotrophomonas, and Tepidimonas (Fig. 4). In addition, the groups dominant in Cluster 1 samples had significant positive correlations with the five Vibrionaceae OTUs.

Bottom Line: These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases.Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies.The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

View Article: PubMed Central - PubMed

Affiliation: Soil and Water Science Department, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, Florida, United States of America.

ABSTRACT
Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

Show MeSH