Limits...
Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions.

Meyer JL, Paul VJ, Teplitski M - PLoS ONE (2014)

Bottom Line: These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases.Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies.The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

View Article: PubMed Central - PubMed

Affiliation: Soil and Water Science Department, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, Florida, United States of America.

ABSTRACT
Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

Show MeSH
Comparison of surface microbiomes of Porites astreoides with and without visible lesions.Panel A: UPGMA (Unweighted Pair Group Method with Arithmetic mean) clustering of Porites surface microbiomes based on the Morisita-Horn beta diversity of V4 region of 16S rRNA genes revealed two distinct clusters of samples (designated “Cluster 1” and “Cluster 2”). The scale bar represents the beta diversity distance. Samples collected from visibly lesioned corals are labeled with a black diamond and are designated “PL”; samples from nonsymptomatic corals are designated “PN”. Samples collected in July are designated with the suffix “S”, all other samples were collected in September. Panel B: Relative abundance of dominant genera (comprising ≥1% of reads in any individual microbiome) in each Porites microbiome based on16S rRNA gene Operational Taxonomic Units.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4061089&req=5

pone-0100316-g003: Comparison of surface microbiomes of Porites astreoides with and without visible lesions.Panel A: UPGMA (Unweighted Pair Group Method with Arithmetic mean) clustering of Porites surface microbiomes based on the Morisita-Horn beta diversity of V4 region of 16S rRNA genes revealed two distinct clusters of samples (designated “Cluster 1” and “Cluster 2”). The scale bar represents the beta diversity distance. Samples collected from visibly lesioned corals are labeled with a black diamond and are designated “PL”; samples from nonsymptomatic corals are designated “PN”. Samples collected in July are designated with the suffix “S”, all other samples were collected in September. Panel B: Relative abundance of dominant genera (comprising ≥1% of reads in any individual microbiome) in each Porites microbiome based on16S rRNA gene Operational Taxonomic Units.

Mentions: Both UPGMA clustering and Principal Coordinates Analysis based on the Morisita-Horn dissimilarity revealed two significantly distinct (ANOSIM statistic R = 1, p = 0.001) clusters of communities (Fig. 3), that did not correspond to the disease state (lesioned versus nonsymptomatic) nor to the collection month (Fig. S1). The first group (Cluster 1, Fig. 3) contained four samples, three of which were from lesioned samples, as well as a July sample from a nonsymptomatic coral. These four microbiomes were significantly altered from all other samples (Cluster 2, Fig. 3) in their dramatic decrease in the Gammaproteobacterial genus Endozoicomonas. Cluster 1 samples had an average of 2.9% (±2.8%) of reads assigned to Endozoicomonas, while Cluster 2 samples had an average of 66.8% (±19.5%) of reads assigned to Endozoicomonas. In addition, Endozoicomonas contributed an average of 24% (±15%) to the overall dissimilarity between lesioned and nonsymptomatic microbiomes (regardless of cluster), where apparently healthy microbiomes harbored more Endozoicomonas (Table 2). In contrast, Cluster 1 samples were characterized largely by reads assigned to the genera Sphingobium, Weeksella, Pseudoxanthomonas, Stenotrophomonas, and Tepidimonas, and to mitochondrial DNA from the fungus Alternaria. While the methods used here are not designed to capture the entire fungal diversity of the samples, the differences in the relative abundance of Alternaria across samples are informative, and Simper analysis showed that Alternaria contributed as much as 7% (±8%) to the differences between lesioned and nonsymptomatic microbiomes (Table 2).


Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions.

Meyer JL, Paul VJ, Teplitski M - PLoS ONE (2014)

Comparison of surface microbiomes of Porites astreoides with and without visible lesions.Panel A: UPGMA (Unweighted Pair Group Method with Arithmetic mean) clustering of Porites surface microbiomes based on the Morisita-Horn beta diversity of V4 region of 16S rRNA genes revealed two distinct clusters of samples (designated “Cluster 1” and “Cluster 2”). The scale bar represents the beta diversity distance. Samples collected from visibly lesioned corals are labeled with a black diamond and are designated “PL”; samples from nonsymptomatic corals are designated “PN”. Samples collected in July are designated with the suffix “S”, all other samples were collected in September. Panel B: Relative abundance of dominant genera (comprising ≥1% of reads in any individual microbiome) in each Porites microbiome based on16S rRNA gene Operational Taxonomic Units.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4061089&req=5

pone-0100316-g003: Comparison of surface microbiomes of Porites astreoides with and without visible lesions.Panel A: UPGMA (Unweighted Pair Group Method with Arithmetic mean) clustering of Porites surface microbiomes based on the Morisita-Horn beta diversity of V4 region of 16S rRNA genes revealed two distinct clusters of samples (designated “Cluster 1” and “Cluster 2”). The scale bar represents the beta diversity distance. Samples collected from visibly lesioned corals are labeled with a black diamond and are designated “PL”; samples from nonsymptomatic corals are designated “PN”. Samples collected in July are designated with the suffix “S”, all other samples were collected in September. Panel B: Relative abundance of dominant genera (comprising ≥1% of reads in any individual microbiome) in each Porites microbiome based on16S rRNA gene Operational Taxonomic Units.
Mentions: Both UPGMA clustering and Principal Coordinates Analysis based on the Morisita-Horn dissimilarity revealed two significantly distinct (ANOSIM statistic R = 1, p = 0.001) clusters of communities (Fig. 3), that did not correspond to the disease state (lesioned versus nonsymptomatic) nor to the collection month (Fig. S1). The first group (Cluster 1, Fig. 3) contained four samples, three of which were from lesioned samples, as well as a July sample from a nonsymptomatic coral. These four microbiomes were significantly altered from all other samples (Cluster 2, Fig. 3) in their dramatic decrease in the Gammaproteobacterial genus Endozoicomonas. Cluster 1 samples had an average of 2.9% (±2.8%) of reads assigned to Endozoicomonas, while Cluster 2 samples had an average of 66.8% (±19.5%) of reads assigned to Endozoicomonas. In addition, Endozoicomonas contributed an average of 24% (±15%) to the overall dissimilarity between lesioned and nonsymptomatic microbiomes (regardless of cluster), where apparently healthy microbiomes harbored more Endozoicomonas (Table 2). In contrast, Cluster 1 samples were characterized largely by reads assigned to the genera Sphingobium, Weeksella, Pseudoxanthomonas, Stenotrophomonas, and Tepidimonas, and to mitochondrial DNA from the fungus Alternaria. While the methods used here are not designed to capture the entire fungal diversity of the samples, the differences in the relative abundance of Alternaria across samples are informative, and Simper analysis showed that Alternaria contributed as much as 7% (±8%) to the differences between lesioned and nonsymptomatic microbiomes (Table 2).

Bottom Line: These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases.Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies.The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

View Article: PubMed Central - PubMed

Affiliation: Soil and Water Science Department, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, Florida, United States of America.

ABSTRACT
Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

Show MeSH