Limits...
Behavioral and neural correlates of executive functioning in musicians and non-musicians.

Zuk J, Benjamin C, Kenyon A, Gaab N - PLoS ONE (2014)

Bottom Line: Adult musicians compared to non-musicians showed enhanced performance on measures of cognitive flexibility, working memory, and verbal fluency.Musically trained children showed enhanced performance on measures of verbal fluency and processing speed, and significantly greater activation in pre-SMA/SMA and right VLPFC during rule representation and task-switching compared to musically untrained children.These results support the working hypothesis that musical training may promote the development and maintenance of certain EF skills, which could mediate the previously reported links between musical training and enhanced cognitive skills and academic achievement.

View Article: PubMed Central - PubMed

Affiliation: Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America; Harvard Medical School, Boston, Massachusetts, United States of America.

ABSTRACT
Executive functions (EF) are cognitive capacities that allow for planned, controlled behavior and strongly correlate with academic abilities. Several extracurricular activities have been shown to improve EF, however, the relationship between musical training and EF remains unclear due to methodological limitations in previous studies. To explore this further, two experiments were performed; one with 30 adults with and without musical training and one with 27 musically trained and untrained children (matched for general cognitive abilities and socioeconomic variables) with a standardized EF battery. Furthermore, the neural correlates of EF skills in musically trained and untrained children were investigated using fMRI. Adult musicians compared to non-musicians showed enhanced performance on measures of cognitive flexibility, working memory, and verbal fluency. Musically trained children showed enhanced performance on measures of verbal fluency and processing speed, and significantly greater activation in pre-SMA/SMA and right VLPFC during rule representation and task-switching compared to musically untrained children. Overall, musicians show enhanced performance on several constructs of EF, and musically trained children further show heightened brain activation in traditional EF regions during task-switching. These results support the working hypothesis that musical training may promote the development and maintenance of certain EF skills, which could mediate the previously reported links between musical training and enhanced cognitive skills and academic achievement.

Show MeSH

Related in: MedlinePlus

Cross-modal shifting task (fMRI).In each trial a cue [arrow; circle; or triangle] representing a rule was followed by a sound. Children responded with a left or right button press (arrow: horse  =  right; dog  =  left; circle: frog = right; bird = left; triangle: bird = right; frog = left). Critically, in one instance the rule consistently maps to single auditory stimuli (univalent rule) while in the latter two the auditory stimulus-response relationship changes with the visual cue (bivalent rules).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4061064&req=5

pone-0099868-g001: Cross-modal shifting task (fMRI).In each trial a cue [arrow; circle; or triangle] representing a rule was followed by a sound. Children responded with a left or right button press (arrow: horse  =  right; dog  =  left; circle: frog = right; bird = left; triangle: bird = right; frog = left). Critically, in one instance the rule consistently maps to single auditory stimuli (univalent rule) while in the latter two the auditory stimulus-response relationship changes with the visual cue (bivalent rules).

Mentions: A multi-modal version of a traditional set-shifting task was developed (Figure 1) after Crone et al. [8] and implemented in the musically trained and untrained children. Auditory stimuli were incorporated in this task since musical training has shown specialization in the auditory domain [90] and since Pallesen et al. [79] observed differences in prefrontal and SMA areas during an auditory working memory task. Rules were indicated by visual cues (n = 3) followed by auditory stimuli to button presses (left, right), which included one univalent rule, where the auditory stimuli consistently mapped to left and right responses; and two bivalent rules where the sound alternately mapped a left or right response. Specifically, for the univalent rule condition, children would see an arrow followed by either the sound of a horse (“neigh”) or a dog (“arf arf”) 500 ms later. The task was then to press the right button for the horse and the left for the dog. In the bivalent rule condition, children would see either a circle or triangle, and 500 ms later hear either a frog sound (“ribbit”) or bird sound (“tweet”). If the circle was presented, the task was to press the right button for the frog and the left button for the bird, whereas if the triangle was presented, children were instructed to press the left button for the frog and the right button for the bird. Trials included a cue (1000 ms), break (500 ms) then auditory stimulus (2000 ms) followed by a crosshair until the subsequent trial commenced. Participants trained on 15 trials of each rule, then on a single session with all rules intermixed for 90 trials. In the fMRI task, each participant completed two sessions with 90 trials each (30 trials of each rule type: 30 with a univalent and 60 with bivalent rule conditions (30 for each bivalent rule 1 and 2), with sessions counterbalanced across participants and matched between musicians and non-musicians. Out of the 90 trials, approximately 12% were univalent rule repetitions (univalent rule trial → univalent rule trial); approximately 22% were univalent switches (switch from bivalent rule 1 trial → univalent rule trial and bivalent rule 2 trial → univalent rule trial), approximately 22% were bivalent repetitions (bivalent rule 1 trial → bivalent rule 1 trial and bivalent rule 2 trial → bivalent rule 2 trial), approximately 22% were bivalent switches (switch from univalent rule trial → bivalent rule 1 trial and univalent rule trial → bivalent rule 2 trial) and approximately 22% were bivalent reconfigurations (switch from bivalent rule 1 → bivalent rule 2 and vice versa).


Behavioral and neural correlates of executive functioning in musicians and non-musicians.

Zuk J, Benjamin C, Kenyon A, Gaab N - PLoS ONE (2014)

Cross-modal shifting task (fMRI).In each trial a cue [arrow; circle; or triangle] representing a rule was followed by a sound. Children responded with a left or right button press (arrow: horse  =  right; dog  =  left; circle: frog = right; bird = left; triangle: bird = right; frog = left). Critically, in one instance the rule consistently maps to single auditory stimuli (univalent rule) while in the latter two the auditory stimulus-response relationship changes with the visual cue (bivalent rules).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4061064&req=5

pone-0099868-g001: Cross-modal shifting task (fMRI).In each trial a cue [arrow; circle; or triangle] representing a rule was followed by a sound. Children responded with a left or right button press (arrow: horse  =  right; dog  =  left; circle: frog = right; bird = left; triangle: bird = right; frog = left). Critically, in one instance the rule consistently maps to single auditory stimuli (univalent rule) while in the latter two the auditory stimulus-response relationship changes with the visual cue (bivalent rules).
Mentions: A multi-modal version of a traditional set-shifting task was developed (Figure 1) after Crone et al. [8] and implemented in the musically trained and untrained children. Auditory stimuli were incorporated in this task since musical training has shown specialization in the auditory domain [90] and since Pallesen et al. [79] observed differences in prefrontal and SMA areas during an auditory working memory task. Rules were indicated by visual cues (n = 3) followed by auditory stimuli to button presses (left, right), which included one univalent rule, where the auditory stimuli consistently mapped to left and right responses; and two bivalent rules where the sound alternately mapped a left or right response. Specifically, for the univalent rule condition, children would see an arrow followed by either the sound of a horse (“neigh”) or a dog (“arf arf”) 500 ms later. The task was then to press the right button for the horse and the left for the dog. In the bivalent rule condition, children would see either a circle or triangle, and 500 ms later hear either a frog sound (“ribbit”) or bird sound (“tweet”). If the circle was presented, the task was to press the right button for the frog and the left button for the bird, whereas if the triangle was presented, children were instructed to press the left button for the frog and the right button for the bird. Trials included a cue (1000 ms), break (500 ms) then auditory stimulus (2000 ms) followed by a crosshair until the subsequent trial commenced. Participants trained on 15 trials of each rule, then on a single session with all rules intermixed for 90 trials. In the fMRI task, each participant completed two sessions with 90 trials each (30 trials of each rule type: 30 with a univalent and 60 with bivalent rule conditions (30 for each bivalent rule 1 and 2), with sessions counterbalanced across participants and matched between musicians and non-musicians. Out of the 90 trials, approximately 12% were univalent rule repetitions (univalent rule trial → univalent rule trial); approximately 22% were univalent switches (switch from bivalent rule 1 trial → univalent rule trial and bivalent rule 2 trial → univalent rule trial), approximately 22% were bivalent repetitions (bivalent rule 1 trial → bivalent rule 1 trial and bivalent rule 2 trial → bivalent rule 2 trial), approximately 22% were bivalent switches (switch from univalent rule trial → bivalent rule 1 trial and univalent rule trial → bivalent rule 2 trial) and approximately 22% were bivalent reconfigurations (switch from bivalent rule 1 → bivalent rule 2 and vice versa).

Bottom Line: Adult musicians compared to non-musicians showed enhanced performance on measures of cognitive flexibility, working memory, and verbal fluency.Musically trained children showed enhanced performance on measures of verbal fluency and processing speed, and significantly greater activation in pre-SMA/SMA and right VLPFC during rule representation and task-switching compared to musically untrained children.These results support the working hypothesis that musical training may promote the development and maintenance of certain EF skills, which could mediate the previously reported links between musical training and enhanced cognitive skills and academic achievement.

View Article: PubMed Central - PubMed

Affiliation: Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America; Harvard Medical School, Boston, Massachusetts, United States of America.

ABSTRACT
Executive functions (EF) are cognitive capacities that allow for planned, controlled behavior and strongly correlate with academic abilities. Several extracurricular activities have been shown to improve EF, however, the relationship between musical training and EF remains unclear due to methodological limitations in previous studies. To explore this further, two experiments were performed; one with 30 adults with and without musical training and one with 27 musically trained and untrained children (matched for general cognitive abilities and socioeconomic variables) with a standardized EF battery. Furthermore, the neural correlates of EF skills in musically trained and untrained children were investigated using fMRI. Adult musicians compared to non-musicians showed enhanced performance on measures of cognitive flexibility, working memory, and verbal fluency. Musically trained children showed enhanced performance on measures of verbal fluency and processing speed, and significantly greater activation in pre-SMA/SMA and right VLPFC during rule representation and task-switching compared to musically untrained children. Overall, musicians show enhanced performance on several constructs of EF, and musically trained children further show heightened brain activation in traditional EF regions during task-switching. These results support the working hypothesis that musical training may promote the development and maintenance of certain EF skills, which could mediate the previously reported links between musical training and enhanced cognitive skills and academic achievement.

Show MeSH
Related in: MedlinePlus