Limits...
Neural mechanisms of auditory categorization: from across brain areas to within local microcircuits.

Tsunada J, Cohen YE - Front Neurosci (2014)

Bottom Line: We propose different neural transformations across different scales of neural organization in auditory categorization.Along the ascending auditory system in the ventral pathway, there is a progression in the encoding of categories from simple acoustic categories to categories for abstract information.On the other hand, in local microcircuits, different classes of neurons differentially compute categorical information.

View Article: PubMed Central - PubMed

Affiliation: Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA.

ABSTRACT
Categorization enables listeners to efficiently encode and respond to auditory stimuli. Behavioral evidence for auditory categorization has been well documented across a broad range of human and non-human animal species. Moreover, neural correlates of auditory categorization have been documented in a variety of different brain regions in the ventral auditory pathway, which is thought to underlie auditory-object processing and auditory perception. Here, we review and discuss how neural representations of auditory categories are transformed across different scales of neural organization in the ventral auditory pathway: from across different brain areas to within local microcircuits. We propose different neural transformations across different scales of neural organization in auditory categorization. Along the ascending auditory system in the ventral pathway, there is a progression in the encoding of categories from simple acoustic categories to categories for abstract information. On the other hand, in local microcircuits, different classes of neurons differentially compute categorical information.

No MeSH data available.


Related in: MedlinePlus

The ventral auditory pathway in the monkey brain. The ventral auditory pathway begins in core auditory cortex (in particular, the primary auditory cortex A1 and the rostral field R). The pathway continues into the middle-lateral (MLB) and anterolateral (ALB) belt regions, which project directly and indirectly to the ventral prefrontal cortex. Arrows indicate feedforward projections. The figure is modified, with permission, from Hackett et al. (1998) and Romanski et al. (1999a).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4060728&req=5

Figure 1: The ventral auditory pathway in the monkey brain. The ventral auditory pathway begins in core auditory cortex (in particular, the primary auditory cortex A1 and the rostral field R). The pathway continues into the middle-lateral (MLB) and anterolateral (ALB) belt regions, which project directly and indirectly to the ventral prefrontal cortex. Arrows indicate feedforward projections. The figure is modified, with permission, from Hackett et al. (1998) and Romanski et al. (1999a).

Mentions: The ventral pathway is targeted because neural computations in this pathway are thought to underlie sound perception, which is critically related to auditory categorization and auditory scene analysis (Rauschecker and Scott, 2009; Romanski and Averbeck, 2009; Bizley and Cohen, 2013). The ventral auditory pathway begins in the core auditory cortex (in particular, the primary auditory cortex and the rostral field R) and continues into the anterolateral and middle-lateral belt regions. These belt regions then project either directly or indirectly to the ventral prefrontal cortex (Figure 1) (Hackett et al., 1998; Rauschecker, 1998; Kaas and Hackett, 1999, 2000; Kaas et al., 1999; Romanski et al., 1999a,b; Rauschecker and Tian, 2000; Rauschecker and Scott, 2009; Romanski and Averbeck, 2009; Recanzone and Cohen, 2010; Bizley and Cohen, 2013).


Neural mechanisms of auditory categorization: from across brain areas to within local microcircuits.

Tsunada J, Cohen YE - Front Neurosci (2014)

The ventral auditory pathway in the monkey brain. The ventral auditory pathway begins in core auditory cortex (in particular, the primary auditory cortex A1 and the rostral field R). The pathway continues into the middle-lateral (MLB) and anterolateral (ALB) belt regions, which project directly and indirectly to the ventral prefrontal cortex. Arrows indicate feedforward projections. The figure is modified, with permission, from Hackett et al. (1998) and Romanski et al. (1999a).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4060728&req=5

Figure 1: The ventral auditory pathway in the monkey brain. The ventral auditory pathway begins in core auditory cortex (in particular, the primary auditory cortex A1 and the rostral field R). The pathway continues into the middle-lateral (MLB) and anterolateral (ALB) belt regions, which project directly and indirectly to the ventral prefrontal cortex. Arrows indicate feedforward projections. The figure is modified, with permission, from Hackett et al. (1998) and Romanski et al. (1999a).
Mentions: The ventral pathway is targeted because neural computations in this pathway are thought to underlie sound perception, which is critically related to auditory categorization and auditory scene analysis (Rauschecker and Scott, 2009; Romanski and Averbeck, 2009; Bizley and Cohen, 2013). The ventral auditory pathway begins in the core auditory cortex (in particular, the primary auditory cortex and the rostral field R) and continues into the anterolateral and middle-lateral belt regions. These belt regions then project either directly or indirectly to the ventral prefrontal cortex (Figure 1) (Hackett et al., 1998; Rauschecker, 1998; Kaas and Hackett, 1999, 2000; Kaas et al., 1999; Romanski et al., 1999a,b; Rauschecker and Tian, 2000; Rauschecker and Scott, 2009; Romanski and Averbeck, 2009; Recanzone and Cohen, 2010; Bizley and Cohen, 2013).

Bottom Line: We propose different neural transformations across different scales of neural organization in auditory categorization.Along the ascending auditory system in the ventral pathway, there is a progression in the encoding of categories from simple acoustic categories to categories for abstract information.On the other hand, in local microcircuits, different classes of neurons differentially compute categorical information.

View Article: PubMed Central - PubMed

Affiliation: Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA.

ABSTRACT
Categorization enables listeners to efficiently encode and respond to auditory stimuli. Behavioral evidence for auditory categorization has been well documented across a broad range of human and non-human animal species. Moreover, neural correlates of auditory categorization have been documented in a variety of different brain regions in the ventral auditory pathway, which is thought to underlie auditory-object processing and auditory perception. Here, we review and discuss how neural representations of auditory categories are transformed across different scales of neural organization in the ventral auditory pathway: from across different brain areas to within local microcircuits. We propose different neural transformations across different scales of neural organization in auditory categorization. Along the ascending auditory system in the ventral pathway, there is a progression in the encoding of categories from simple acoustic categories to categories for abstract information. On the other hand, in local microcircuits, different classes of neurons differentially compute categorical information.

No MeSH data available.


Related in: MedlinePlus