Limits...
Two-layer fragile watermarking method secured with chaotic map for authentication of digital Holy Quran.

Khalil MS, Kurniawan F, Khan MK, Alginahi YM - ScientificWorldJournal (2014)

Bottom Line: Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain.The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark.A chaotic map is utilized to blur the watermark to make it secure against the local attack.

View Article: PubMed Central - PubMed

Affiliation: Center of Excellence Information Assurance, King Saud University, P.O. Box 92144, Riyadh 11653, Saudi Arabia ; IT Research Center for the Holy Quran and Its Sciences (NOOR), Taibah University, Madinah 41477, Saudi Arabia.

ABSTRACT
This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small.

Show MeSH
Bit error rates result against pixel manipulation attack.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4060594&req=5

fig7: Bit error rates result against pixel manipulation attack.

Mentions: The next evaluation is carried out to study the capability of proposed method with respect to the pixel manipulation as reported in Table 5. Table 5 of the pixel manipulation shows a particular region of the watermarked Quran image that has been altered, which is a single dot of the verse deleted. Such manipulation undoubtedly annoys the integrity of the Quran's content as the dot(s) has significance in Arabic alphabets. The parameter n value within range {1, 15} is tested to understand the influence against tamper detection. Tables 8 and 9 show PSNR and BER results. Figures 5(i)–5(vi) show the location of the tampered region in the image as black box. Image quality metrics confirm that after attack the quality is decreased and tends to have a constant value as depicted in Figure 6. The fragility reported in Figure 7 that shows on JPEG dataset pixel manipulation can be detected under any n value. Meanwhile, fragility on PNG dataset can achieve 100% only after n ≥ 5.


Two-layer fragile watermarking method secured with chaotic map for authentication of digital Holy Quran.

Khalil MS, Kurniawan F, Khan MK, Alginahi YM - ScientificWorldJournal (2014)

Bit error rates result against pixel manipulation attack.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4060594&req=5

fig7: Bit error rates result against pixel manipulation attack.
Mentions: The next evaluation is carried out to study the capability of proposed method with respect to the pixel manipulation as reported in Table 5. Table 5 of the pixel manipulation shows a particular region of the watermarked Quran image that has been altered, which is a single dot of the verse deleted. Such manipulation undoubtedly annoys the integrity of the Quran's content as the dot(s) has significance in Arabic alphabets. The parameter n value within range {1, 15} is tested to understand the influence against tamper detection. Tables 8 and 9 show PSNR and BER results. Figures 5(i)–5(vi) show the location of the tampered region in the image as black box. Image quality metrics confirm that after attack the quality is decreased and tends to have a constant value as depicted in Figure 6. The fragility reported in Figure 7 that shows on JPEG dataset pixel manipulation can be detected under any n value. Meanwhile, fragility on PNG dataset can achieve 100% only after n ≥ 5.

Bottom Line: Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain.The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark.A chaotic map is utilized to blur the watermark to make it secure against the local attack.

View Article: PubMed Central - PubMed

Affiliation: Center of Excellence Information Assurance, King Saud University, P.O. Box 92144, Riyadh 11653, Saudi Arabia ; IT Research Center for the Holy Quran and Its Sciences (NOOR), Taibah University, Madinah 41477, Saudi Arabia.

ABSTRACT
This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small.

Show MeSH