Limits...
The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae).

Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P - BMC Microbiol. (2014)

Bottom Line: High abundance of Enterobacteriaceae was also detected by culturing under aerobic conditions.Unexpectedly, acetic acid bacteria (AAB), that are known to establish symbiotic associations with insects relying on sugar-based diets, were not detected.These bacteria are supposedly responsible for palm tissue fermentation in the tunnels where RPW larvae thrive and might have a key role in the insect nutrition, and other functions that need to be investigated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department STEBICEF, University of Palermo Viale delle Scienze Ed,16, Palermo 90128, Italy. paola.quatrini@unipa.it.

ABSTRACT

Background: The red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is one of the major pests of palms. The larvae bore into the palm trunk and feed on the palm tender tissues and sap, leading the host tree to death. The gut microbiota of insects plays a remarkable role in the host life and understanding the relationship dynamics between insects and their microbiota may improve the biological control of insect pests. The purpose of this study was to analyse the diversity of the gut microbiota of field-caught RPW larvae sampled in Sicily (Italy).

Results: The 16S rRNA gene-based Temporal Thermal Gradient Gel Electrophoresis (TTGE) of the gut microbiota of RPW field-trapped larvae revealed low bacterial diversity and stability of the community over seasons and among pools of larvae from different host trees. Pyrosequencing of the 16S rRNA gene V3 region confirmed low complexity and assigned 98% of the 75,564 reads to only three phyla: Proteobacteria (64.7%) Bacteroidetes (23.6%) and Firmicutes (9.6%) and three main families [Enterobacteriaceae (61.5%), Porphyromonadaceae (22.1%) and Streptococcaceae (8.9%)]. More than half of the reads could be classified at the genus level and eight bacterial genera were detected in the larval RPW gut at an abundance ≥1%: Dysgonomonas (21.8%), Lactococcus (8.9%), Salmonella (6.8%), Enterobacter (3.8%), Budvicia (2.8%), Entomoplasma (1.4%), Bacteroides (1.3%) and Comamonas (1%). High abundance of Enterobacteriaceae was also detected by culturing under aerobic conditions. Unexpectedly, acetic acid bacteria (AAB), that are known to establish symbiotic associations with insects relying on sugar-based diets, were not detected.

Conclusions: The RPW gut microbiota is composed mainly of facultative and obligate anaerobic bacteria with a fermentative metabolism. These bacteria are supposedly responsible for palm tissue fermentation in the tunnels where RPW larvae thrive and might have a key role in the insect nutrition, and other functions that need to be investigated.

Show MeSH

Related in: MedlinePlus

Temporal Thermal Gradient gel Electrophoresis (TTGE) profiles of PCR-amplified 16S gene fragments derived from field collected larvae of Rhynchophorus ferrugineus. Lane 1: TTGE profile of a pool of three larvae (average weight: 3.25 g; SD: 0.55) collected in December 2010 in a palm tree in the urban area of Palermo (Italy). Lane 2: TTGE profile of a pool of three larvae collected in April 2011 (average weight: 3.86 g; SD: 0.64) in the urban area of Palermo (Italy). Lane 3: TTGE profile of a pool of three larvae collected in April 2011 (average weight 3.60 g; SD: 0.53) in San Vito lo Capo (Trapani, Italy).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4060583&req=5

Figure 1: Temporal Thermal Gradient gel Electrophoresis (TTGE) profiles of PCR-amplified 16S gene fragments derived from field collected larvae of Rhynchophorus ferrugineus. Lane 1: TTGE profile of a pool of three larvae (average weight: 3.25 g; SD: 0.55) collected in December 2010 in a palm tree in the urban area of Palermo (Italy). Lane 2: TTGE profile of a pool of three larvae collected in April 2011 (average weight: 3.86 g; SD: 0.64) in the urban area of Palermo (Italy). Lane 3: TTGE profile of a pool of three larvae collected in April 2011 (average weight 3.60 g; SD: 0.53) in San Vito lo Capo (Trapani, Italy).

Mentions: Bacterial TTGE profiles were generated using PCR-amplified bacterial 16S rRNA gene fragments from the content of pooled RPW larval guts collected from the trunks of infested P. canariensis palms in three different seasons and two areas in Sicily (Italy). TTGE band profiles indicate the presence of an average of 25 bands per sample, that correspond to putative bacterial phylotypes in RPW larval guts. An example of TTGE gel is shown in Figure 1, where three different pooled guts collected in December 2010 and April 2011 in Palermo (lanes 1 and 2, respectively), and in April 2011 in San Vito lo Capo (Trapani, lane 3) were analysed. All samples shared 16 bands, while 4, 2 and 4 bands were unique for samples 1, 2, 3, respectively. Similar profiles were obtained from larvae collected in October both in Palermo and Trapani (data not shown). Random sequencing of TTGE bands identified the presence of uncultured Gammaproteobacteria (of the genera Pantoea and Enterobacter) and Firmicutes (of genera Megasphaera and Clostridium) (Figure 1).


The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae).

Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P - BMC Microbiol. (2014)

Temporal Thermal Gradient gel Electrophoresis (TTGE) profiles of PCR-amplified 16S gene fragments derived from field collected larvae of Rhynchophorus ferrugineus. Lane 1: TTGE profile of a pool of three larvae (average weight: 3.25 g; SD: 0.55) collected in December 2010 in a palm tree in the urban area of Palermo (Italy). Lane 2: TTGE profile of a pool of three larvae collected in April 2011 (average weight: 3.86 g; SD: 0.64) in the urban area of Palermo (Italy). Lane 3: TTGE profile of a pool of three larvae collected in April 2011 (average weight 3.60 g; SD: 0.53) in San Vito lo Capo (Trapani, Italy).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4060583&req=5

Figure 1: Temporal Thermal Gradient gel Electrophoresis (TTGE) profiles of PCR-amplified 16S gene fragments derived from field collected larvae of Rhynchophorus ferrugineus. Lane 1: TTGE profile of a pool of three larvae (average weight: 3.25 g; SD: 0.55) collected in December 2010 in a palm tree in the urban area of Palermo (Italy). Lane 2: TTGE profile of a pool of three larvae collected in April 2011 (average weight: 3.86 g; SD: 0.64) in the urban area of Palermo (Italy). Lane 3: TTGE profile of a pool of three larvae collected in April 2011 (average weight 3.60 g; SD: 0.53) in San Vito lo Capo (Trapani, Italy).
Mentions: Bacterial TTGE profiles were generated using PCR-amplified bacterial 16S rRNA gene fragments from the content of pooled RPW larval guts collected from the trunks of infested P. canariensis palms in three different seasons and two areas in Sicily (Italy). TTGE band profiles indicate the presence of an average of 25 bands per sample, that correspond to putative bacterial phylotypes in RPW larval guts. An example of TTGE gel is shown in Figure 1, where three different pooled guts collected in December 2010 and April 2011 in Palermo (lanes 1 and 2, respectively), and in April 2011 in San Vito lo Capo (Trapani, lane 3) were analysed. All samples shared 16 bands, while 4, 2 and 4 bands were unique for samples 1, 2, 3, respectively. Similar profiles were obtained from larvae collected in October both in Palermo and Trapani (data not shown). Random sequencing of TTGE bands identified the presence of uncultured Gammaproteobacteria (of the genera Pantoea and Enterobacter) and Firmicutes (of genera Megasphaera and Clostridium) (Figure 1).

Bottom Line: High abundance of Enterobacteriaceae was also detected by culturing under aerobic conditions.Unexpectedly, acetic acid bacteria (AAB), that are known to establish symbiotic associations with insects relying on sugar-based diets, were not detected.These bacteria are supposedly responsible for palm tissue fermentation in the tunnels where RPW larvae thrive and might have a key role in the insect nutrition, and other functions that need to be investigated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department STEBICEF, University of Palermo Viale delle Scienze Ed,16, Palermo 90128, Italy. paola.quatrini@unipa.it.

ABSTRACT

Background: The red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is one of the major pests of palms. The larvae bore into the palm trunk and feed on the palm tender tissues and sap, leading the host tree to death. The gut microbiota of insects plays a remarkable role in the host life and understanding the relationship dynamics between insects and their microbiota may improve the biological control of insect pests. The purpose of this study was to analyse the diversity of the gut microbiota of field-caught RPW larvae sampled in Sicily (Italy).

Results: The 16S rRNA gene-based Temporal Thermal Gradient Gel Electrophoresis (TTGE) of the gut microbiota of RPW field-trapped larvae revealed low bacterial diversity and stability of the community over seasons and among pools of larvae from different host trees. Pyrosequencing of the 16S rRNA gene V3 region confirmed low complexity and assigned 98% of the 75,564 reads to only three phyla: Proteobacteria (64.7%) Bacteroidetes (23.6%) and Firmicutes (9.6%) and three main families [Enterobacteriaceae (61.5%), Porphyromonadaceae (22.1%) and Streptococcaceae (8.9%)]. More than half of the reads could be classified at the genus level and eight bacterial genera were detected in the larval RPW gut at an abundance ≥1%: Dysgonomonas (21.8%), Lactococcus (8.9%), Salmonella (6.8%), Enterobacter (3.8%), Budvicia (2.8%), Entomoplasma (1.4%), Bacteroides (1.3%) and Comamonas (1%). High abundance of Enterobacteriaceae was also detected by culturing under aerobic conditions. Unexpectedly, acetic acid bacteria (AAB), that are known to establish symbiotic associations with insects relying on sugar-based diets, were not detected.

Conclusions: The RPW gut microbiota is composed mainly of facultative and obligate anaerobic bacteria with a fermentative metabolism. These bacteria are supposedly responsible for palm tissue fermentation in the tunnels where RPW larvae thrive and might have a key role in the insect nutrition, and other functions that need to be investigated.

Show MeSH
Related in: MedlinePlus