Limits...
NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles.

Gopinathan N, Yang B, Lowe JP, Edler KJ, Rigby SP - Int J Pharm (2014)

Bottom Line: PLGA/PLA polymeric nanoparticles could potentially enhance the effectiveness of convective delivery of drugs, such as carboplatin, to the brain, by enabling a more sustained dosage over a longer time than otherwise possible.For a core-coat nanoparticle formulation, the development of smaller nanopores, following an extended induction period with no structural change, was associated with the onset of substantial drug release.Hence, the specific reasons for the effectiveness of the synthesis route, for obtaining core-coat nanoparticles with delayed release, have been elucidated.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

Show MeSH
© Copyright Policy - CC BY
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4048935&req=5


NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles.

Gopinathan N, Yang B, Lowe JP, Edler KJ, Rigby SP - Int J Pharm (2014)

© Copyright Policy - CC BY
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4048935&req=5

Bottom Line: PLGA/PLA polymeric nanoparticles could potentially enhance the effectiveness of convective delivery of drugs, such as carboplatin, to the brain, by enabling a more sustained dosage over a longer time than otherwise possible.For a core-coat nanoparticle formulation, the development of smaller nanopores, following an extended induction period with no structural change, was associated with the onset of substantial drug release.Hence, the specific reasons for the effectiveness of the synthesis route, for obtaining core-coat nanoparticles with delayed release, have been elucidated.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

Show MeSH