Limits...
Construction and verification of the transcriptional regulatory response network of Streptococcus mutans upon treatment with the biofilm inhibitor carolacton.

Sudhakar P, Reck M, Wang W, He FQ, Wagner-Döbler I, Dobler IW, Zeng AP - BMC Genomics (2014)

Bottom Line: To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed.These sub-networks were significantly enriched with genes sharing common functions.Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network.

View Article: PubMed Central - PubMed

Affiliation: Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073 Hamburg, Germany. iwd@helmholtz-hzi.de.

ABSTRACT

Background: Carolacton is a newly identified secondary metabolite causing altered cell morphology and death of Streptococcus mutans biofilm cells. To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed. A systems biological approach integrating time-resolved transcriptomic data, reverse engineering, transcription factor binding sites, and experimental validation was carried out.

Results: The co-expression response network constructed from transcriptomic data using the reverse engineering algorithm called the Trend Correlation method consisted of 8284 gene pairs. The regulatory response network inferred by superimposing transcription factor binding site information into the co-expression network comprised 329 putative transcriptional regulatory interactions and could be classified into 27 sub-networks each co-regulated by a transcription factor. These sub-networks were significantly enriched with genes sharing common functions. The regulatory response network displayed global hierarchy and network motifs as observed in model organisms. The sub-networks modulated by the pyrimidine biosynthesis regulator PyrR, the glutamine synthetase repressor GlnR, the cysteine metabolism regulator CysR, global regulators CcpA and CodY and the two component system response regulators VicR and MbrC among others could putatively be related to the physiological effect of carolacton. The predicted interactions from the regulatory network between MbrC, known to be involved in cell envelope stress response, and the murMN-SMU_718c genes encoding peptidoglycan biosynthetic enzymes were experimentally confirmed using Electro Mobility Shift Assays. Furthermore, gene deletion mutants of five predicted key regulators from the response networks were constructed and their sensitivities towards carolacton were investigated. Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network.

Conclusion: The network approach used in this study revealed important regulators and interactions as part of the response mechanisms of S. mutans biofilm cells to carolacton. It also opens a door for further studies into novel drug targets against streptococci.

Show MeSH

Related in: MedlinePlus

Heat map representation of the transcriptional response of theS. mutanspyrimidine metabolic pathway upon carolacton treatment. Genes from the pyrimidine metabolism pathway were among the first to be modulated upon carolacton treatment. The log2-fold expression change of pathway genes at 5 min post treatment were used for the heat-map representation. Green indicates upregulation and red downregulation. The scale is indicative of the corresponding changes in normalized gene expression. Pathway genes encoding enzymes catalyzing reactions leading up to UMP were strongly upregulated while most of the other pathway genes exhibited relatively weak modulation. Enzymes marked in black bold rectangles indicate the corresponding strongly upregulated transcripts of the pathway. White cells correspond to pathway enzymes not found in the genome of S. mutans UA159. If a particular enzyme corresponds to multiple transcripts (as a result of multiple protein subunits constituting an enzyme), then the transcript with the highest amplitude of log2-fold change was used. Graph generated using the Mayday visualization tool version 2.12.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4048456&req=5

Fig4: Heat map representation of the transcriptional response of theS. mutanspyrimidine metabolic pathway upon carolacton treatment. Genes from the pyrimidine metabolism pathway were among the first to be modulated upon carolacton treatment. The log2-fold expression change of pathway genes at 5 min post treatment were used for the heat-map representation. Green indicates upregulation and red downregulation. The scale is indicative of the corresponding changes in normalized gene expression. Pathway genes encoding enzymes catalyzing reactions leading up to UMP were strongly upregulated while most of the other pathway genes exhibited relatively weak modulation. Enzymes marked in black bold rectangles indicate the corresponding strongly upregulated transcripts of the pathway. White cells correspond to pathway enzymes not found in the genome of S. mutans UA159. If a particular enzyme corresponds to multiple transcripts (as a result of multiple protein subunits constituting an enzyme), then the transcript with the highest amplitude of log2-fold change was used. Graph generated using the Mayday visualization tool version 2.12.

Mentions: Peptidoglycan is an important constituent of the gram positive cell-wall. It is expected that cell membrane damage and biofilm inhibition would have a substantial effect on pathways and genes related to cell wall synthesis and metabolism. UDP-N-acetylglucosamine, a key intermediate in the biosynthetic process of the cell wall component peptidoglycan, is produced by glycolysis, sugar metabolism as well as the pyrimidine metabolic pathway [61]. Expression data indicate the absence of immediate modulation and at later time points the downregulation of the glycolytic pathway as well as of the pathways related to the metabolism of various sugars such as fructose, mannose and galactose. On the contrary, two pyrimidine biosynthesis gene clusters (namely the pyrEFDZ and pyrRPBA-carB operons) belonging to the PyrR sub-network and coding for the enzymes of the pyrimidine metabolism pathway (Figure 4) were upregulated by about 1 to 1.8 log2-fold at 5 min post treatment (Figure 5A). It is of note that most of the genes in the pyrimidine metabolism pathway were not transcriptionally altered with the exception of the two strongly upregulated pyrEFDZ and pyrRPBA-carB operons. These operons encode enzymes catalyzing the biochemical steps leading to the production of UMP and UDP (see Figure 4) suggesting that this part of the pathway is specifically activated. An upregulation of the pyrimidine metabolism pathway would produce pools of UDP-N-acetlyglucosamine (UDP-N-AG) for peptidoglycan synthesis compensating carolacton-induced membrane and cell wall damage. The upregulation of pyrimidine biosynthetic steps was also observed in an S.aureus strain harboring a mutation of a two component system essential for cell wall metabolism [62].Figure 4


Construction and verification of the transcriptional regulatory response network of Streptococcus mutans upon treatment with the biofilm inhibitor carolacton.

Sudhakar P, Reck M, Wang W, He FQ, Wagner-Döbler I, Dobler IW, Zeng AP - BMC Genomics (2014)

Heat map representation of the transcriptional response of theS. mutanspyrimidine metabolic pathway upon carolacton treatment. Genes from the pyrimidine metabolism pathway were among the first to be modulated upon carolacton treatment. The log2-fold expression change of pathway genes at 5 min post treatment were used for the heat-map representation. Green indicates upregulation and red downregulation. The scale is indicative of the corresponding changes in normalized gene expression. Pathway genes encoding enzymes catalyzing reactions leading up to UMP were strongly upregulated while most of the other pathway genes exhibited relatively weak modulation. Enzymes marked in black bold rectangles indicate the corresponding strongly upregulated transcripts of the pathway. White cells correspond to pathway enzymes not found in the genome of S. mutans UA159. If a particular enzyme corresponds to multiple transcripts (as a result of multiple protein subunits constituting an enzyme), then the transcript with the highest amplitude of log2-fold change was used. Graph generated using the Mayday visualization tool version 2.12.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4048456&req=5

Fig4: Heat map representation of the transcriptional response of theS. mutanspyrimidine metabolic pathway upon carolacton treatment. Genes from the pyrimidine metabolism pathway were among the first to be modulated upon carolacton treatment. The log2-fold expression change of pathway genes at 5 min post treatment were used for the heat-map representation. Green indicates upregulation and red downregulation. The scale is indicative of the corresponding changes in normalized gene expression. Pathway genes encoding enzymes catalyzing reactions leading up to UMP were strongly upregulated while most of the other pathway genes exhibited relatively weak modulation. Enzymes marked in black bold rectangles indicate the corresponding strongly upregulated transcripts of the pathway. White cells correspond to pathway enzymes not found in the genome of S. mutans UA159. If a particular enzyme corresponds to multiple transcripts (as a result of multiple protein subunits constituting an enzyme), then the transcript with the highest amplitude of log2-fold change was used. Graph generated using the Mayday visualization tool version 2.12.
Mentions: Peptidoglycan is an important constituent of the gram positive cell-wall. It is expected that cell membrane damage and biofilm inhibition would have a substantial effect on pathways and genes related to cell wall synthesis and metabolism. UDP-N-acetylglucosamine, a key intermediate in the biosynthetic process of the cell wall component peptidoglycan, is produced by glycolysis, sugar metabolism as well as the pyrimidine metabolic pathway [61]. Expression data indicate the absence of immediate modulation and at later time points the downregulation of the glycolytic pathway as well as of the pathways related to the metabolism of various sugars such as fructose, mannose and galactose. On the contrary, two pyrimidine biosynthesis gene clusters (namely the pyrEFDZ and pyrRPBA-carB operons) belonging to the PyrR sub-network and coding for the enzymes of the pyrimidine metabolism pathway (Figure 4) were upregulated by about 1 to 1.8 log2-fold at 5 min post treatment (Figure 5A). It is of note that most of the genes in the pyrimidine metabolism pathway were not transcriptionally altered with the exception of the two strongly upregulated pyrEFDZ and pyrRPBA-carB operons. These operons encode enzymes catalyzing the biochemical steps leading to the production of UMP and UDP (see Figure 4) suggesting that this part of the pathway is specifically activated. An upregulation of the pyrimidine metabolism pathway would produce pools of UDP-N-acetlyglucosamine (UDP-N-AG) for peptidoglycan synthesis compensating carolacton-induced membrane and cell wall damage. The upregulation of pyrimidine biosynthetic steps was also observed in an S.aureus strain harboring a mutation of a two component system essential for cell wall metabolism [62].Figure 4

Bottom Line: To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed.These sub-networks were significantly enriched with genes sharing common functions.Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network.

View Article: PubMed Central - PubMed

Affiliation: Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073 Hamburg, Germany. iwd@helmholtz-hzi.de.

ABSTRACT

Background: Carolacton is a newly identified secondary metabolite causing altered cell morphology and death of Streptococcus mutans biofilm cells. To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed. A systems biological approach integrating time-resolved transcriptomic data, reverse engineering, transcription factor binding sites, and experimental validation was carried out.

Results: The co-expression response network constructed from transcriptomic data using the reverse engineering algorithm called the Trend Correlation method consisted of 8284 gene pairs. The regulatory response network inferred by superimposing transcription factor binding site information into the co-expression network comprised 329 putative transcriptional regulatory interactions and could be classified into 27 sub-networks each co-regulated by a transcription factor. These sub-networks were significantly enriched with genes sharing common functions. The regulatory response network displayed global hierarchy and network motifs as observed in model organisms. The sub-networks modulated by the pyrimidine biosynthesis regulator PyrR, the glutamine synthetase repressor GlnR, the cysteine metabolism regulator CysR, global regulators CcpA and CodY and the two component system response regulators VicR and MbrC among others could putatively be related to the physiological effect of carolacton. The predicted interactions from the regulatory network between MbrC, known to be involved in cell envelope stress response, and the murMN-SMU_718c genes encoding peptidoglycan biosynthetic enzymes were experimentally confirmed using Electro Mobility Shift Assays. Furthermore, gene deletion mutants of five predicted key regulators from the response networks were constructed and their sensitivities towards carolacton were investigated. Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network.

Conclusion: The network approach used in this study revealed important regulators and interactions as part of the response mechanisms of S. mutans biofilm cells to carolacton. It also opens a door for further studies into novel drug targets against streptococci.

Show MeSH
Related in: MedlinePlus