Limits...
Proteomic analysis of bladder cancer indicates Prx-I as a key molecule in BI-TK/GCV treatment system.

Jiang L, Xiao X, Ren J, Tang Y, Weng H, Yang Q, Wu M, Tang W - PLoS ONE (2014)

Bottom Line: In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats.Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment.Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA).

View Article: PubMed Central - PubMed

Affiliation: Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

ABSTRACT
In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats. Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment. Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA). These findings yield new insights into the therapy of bladder cancer, revealing Prx-I as a new therapeutic target and indicating BI-TK/GCV system as a prospective therapy by down-regulation of Prx-I through NF-κB signaling pathway.

Show MeSH

Related in: MedlinePlus

Suppression of Prx-I expression with the shRNA vectors in T24 cells.A: The expression of Prx-I mRNA was examined by qPCR. GAPDH served as an internal control. B: The Prx-I protein levels were analyzed by Western blot after transfection. Sh-1 treatment led to a significant reduction in Prx-I protein expression in T-24 cells. (Asterisk (*) indicates P<0.05 in sh-1 group versus parental group)
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4048271&req=5

pone-0098764-g004: Suppression of Prx-I expression with the shRNA vectors in T24 cells.A: The expression of Prx-I mRNA was examined by qPCR. GAPDH served as an internal control. B: The Prx-I protein levels were analyzed by Western blot after transfection. Sh-1 treatment led to a significant reduction in Prx-I protein expression in T-24 cells. (Asterisk (*) indicates P<0.05 in sh-1 group versus parental group)

Mentions: First, the Prx-I mRNA levels from four shRNA vectors transfected for 48 h in the T24 cell lines were measured by qPCR using Lipofectamine 2000. The Prx-I expression decreased by ∼40%, 26%, 18% and 1% in the sh-1, sh-2, sh-3 and con sh groups, respectively compared to the parental group (Figure 4A). To confirm this interfering efficiency, the protein expression levels of Prx-I in T24 cells after transfection were examined by Western blot. Results showed that Prx-I levels decreased significantly by ∼48%, 30%, 18% and 3% from baseline in the sh-1, sh-2, sh-3 and con sh groups respectively (Figure 4B), indicating that the highest interfering efficiency in T24 cells was in the sh-1 group.


Proteomic analysis of bladder cancer indicates Prx-I as a key molecule in BI-TK/GCV treatment system.

Jiang L, Xiao X, Ren J, Tang Y, Weng H, Yang Q, Wu M, Tang W - PLoS ONE (2014)

Suppression of Prx-I expression with the shRNA vectors in T24 cells.A: The expression of Prx-I mRNA was examined by qPCR. GAPDH served as an internal control. B: The Prx-I protein levels were analyzed by Western blot after transfection. Sh-1 treatment led to a significant reduction in Prx-I protein expression in T-24 cells. (Asterisk (*) indicates P<0.05 in sh-1 group versus parental group)
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4048271&req=5

pone-0098764-g004: Suppression of Prx-I expression with the shRNA vectors in T24 cells.A: The expression of Prx-I mRNA was examined by qPCR. GAPDH served as an internal control. B: The Prx-I protein levels were analyzed by Western blot after transfection. Sh-1 treatment led to a significant reduction in Prx-I protein expression in T-24 cells. (Asterisk (*) indicates P<0.05 in sh-1 group versus parental group)
Mentions: First, the Prx-I mRNA levels from four shRNA vectors transfected for 48 h in the T24 cell lines were measured by qPCR using Lipofectamine 2000. The Prx-I expression decreased by ∼40%, 26%, 18% and 1% in the sh-1, sh-2, sh-3 and con sh groups, respectively compared to the parental group (Figure 4A). To confirm this interfering efficiency, the protein expression levels of Prx-I in T24 cells after transfection were examined by Western blot. Results showed that Prx-I levels decreased significantly by ∼48%, 30%, 18% and 3% from baseline in the sh-1, sh-2, sh-3 and con sh groups respectively (Figure 4B), indicating that the highest interfering efficiency in T24 cells was in the sh-1 group.

Bottom Line: In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats.Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment.Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA).

View Article: PubMed Central - PubMed

Affiliation: Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

ABSTRACT
In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats. Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment. Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA). These findings yield new insights into the therapy of bladder cancer, revealing Prx-I as a new therapeutic target and indicating BI-TK/GCV system as a prospective therapy by down-regulation of Prx-I through NF-κB signaling pathway.

Show MeSH
Related in: MedlinePlus