Limits...
Proteomic analysis of bladder cancer indicates Prx-I as a key molecule in BI-TK/GCV treatment system.

Jiang L, Xiao X, Ren J, Tang Y, Weng H, Yang Q, Wu M, Tang W - PLoS ONE (2014)

Bottom Line: In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats.Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment.Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA).

View Article: PubMed Central - PubMed

Affiliation: Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

ABSTRACT
In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats. Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment. Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA). These findings yield new insights into the therapy of bladder cancer, revealing Prx-I as a new therapeutic target and indicating BI-TK/GCV system as a prospective therapy by down-regulation of Prx-I through NF-κB signaling pathway.

Show MeSH

Related in: MedlinePlus

Bioinformatic analysis of differentially expressed proteins after treatment with BI-TK/GCV.PANTHER classification of proteins based on (A) Biological process and (B) molecular function. (C) Interplaying network of proteins with abundance change generated by Ingenuity pathway analysis (IPA). The network implied the connection of Prx-I and NF-κB complex.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4048271&req=5

pone-0098764-g002: Bioinformatic analysis of differentially expressed proteins after treatment with BI-TK/GCV.PANTHER classification of proteins based on (A) Biological process and (B) molecular function. (C) Interplaying network of proteins with abundance change generated by Ingenuity pathway analysis (IPA). The network implied the connection of Prx-I and NF-κB complex.

Mentions: To probe into their biological roles in the curative effect of BI-TK/GCV on bladder cancer, the differentially expressed proteins were categorized into various processes and function classes based on PANTHER classification system. In biological process analysis, the largest proportion of differentially expressed proteins was in metabolic process, followed by cellular process and cell communication process (Figure 2A). Notably, the proteins involved in catalytic activity, binding, structural molecule activity, enzyme regulator activity, and receptor activity were the top five molecular function categories (Figure 2B). Moreover, proteins involved in antioxidant activity accounted for 1.3%, respectively. Figure 2C depicts the primary pathways generated by IPA of the differentially expressed proteins. This network scored 36 and consisted of 37 proteins involved in apoptosis, oxidative stress, and metabolism. In particular, Prx-I, the markedly down-expressed protein after treatment, is directly linked to transcription factor NF-kappa-B (NF-κB) complex pathway in this network, indicating that Prx-I may play an important role in the apoptosis of bladder cancer by BI-TK/GCV system partly through the NF-κB signaling pathway.


Proteomic analysis of bladder cancer indicates Prx-I as a key molecule in BI-TK/GCV treatment system.

Jiang L, Xiao X, Ren J, Tang Y, Weng H, Yang Q, Wu M, Tang W - PLoS ONE (2014)

Bioinformatic analysis of differentially expressed proteins after treatment with BI-TK/GCV.PANTHER classification of proteins based on (A) Biological process and (B) molecular function. (C) Interplaying network of proteins with abundance change generated by Ingenuity pathway analysis (IPA). The network implied the connection of Prx-I and NF-κB complex.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4048271&req=5

pone-0098764-g002: Bioinformatic analysis of differentially expressed proteins after treatment with BI-TK/GCV.PANTHER classification of proteins based on (A) Biological process and (B) molecular function. (C) Interplaying network of proteins with abundance change generated by Ingenuity pathway analysis (IPA). The network implied the connection of Prx-I and NF-κB complex.
Mentions: To probe into their biological roles in the curative effect of BI-TK/GCV on bladder cancer, the differentially expressed proteins were categorized into various processes and function classes based on PANTHER classification system. In biological process analysis, the largest proportion of differentially expressed proteins was in metabolic process, followed by cellular process and cell communication process (Figure 2A). Notably, the proteins involved in catalytic activity, binding, structural molecule activity, enzyme regulator activity, and receptor activity were the top five molecular function categories (Figure 2B). Moreover, proteins involved in antioxidant activity accounted for 1.3%, respectively. Figure 2C depicts the primary pathways generated by IPA of the differentially expressed proteins. This network scored 36 and consisted of 37 proteins involved in apoptosis, oxidative stress, and metabolism. In particular, Prx-I, the markedly down-expressed protein after treatment, is directly linked to transcription factor NF-kappa-B (NF-κB) complex pathway in this network, indicating that Prx-I may play an important role in the apoptosis of bladder cancer by BI-TK/GCV system partly through the NF-κB signaling pathway.

Bottom Line: In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats.Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment.Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA).

View Article: PubMed Central - PubMed

Affiliation: Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

ABSTRACT
In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats. Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment. Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA). These findings yield new insights into the therapy of bladder cancer, revealing Prx-I as a new therapeutic target and indicating BI-TK/GCV system as a prospective therapy by down-regulation of Prx-I through NF-κB signaling pathway.

Show MeSH
Related in: MedlinePlus