Limits...
Proteomic analysis of bladder cancer indicates Prx-I as a key molecule in BI-TK/GCV treatment system.

Jiang L, Xiao X, Ren J, Tang Y, Weng H, Yang Q, Wu M, Tang W - PLoS ONE (2014)

Bottom Line: In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats.Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment.Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA).

View Article: PubMed Central - PubMed

Affiliation: Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

ABSTRACT
In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats. Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment. Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA). These findings yield new insights into the therapy of bladder cancer, revealing Prx-I as a new therapeutic target and indicating BI-TK/GCV system as a prospective therapy by down-regulation of Prx-I through NF-κB signaling pathway.

Show MeSH

Related in: MedlinePlus

Experimental design of proteome analysis after treatment using iTRAQ labeling.A: Schematic diagram showing the workflow of iTRAQ. B: MS/MS spectrum showing the peptides of Prx-I (peptide sequence: VVGGDHVEVHAR). The 4 peak contours describe that the sample volumes are the same which guarantees the results are authentic and reliable.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4048271&req=5

pone-0098764-g001: Experimental design of proteome analysis after treatment using iTRAQ labeling.A: Schematic diagram showing the workflow of iTRAQ. B: MS/MS spectrum showing the peptides of Prx-I (peptide sequence: VVGGDHVEVHAR). The 4 peak contours describe that the sample volumes are the same which guarantees the results are authentic and reliable.

Mentions: A total of 2343 unique proteins were identified with 95% confidence by the ProteinPilot search algorithm against the IPI rat protein database v3.49. A strict cutoff value of a 1.3-fold change resulted in a final set of 402 differentially expressed proteins, including 192 down-regulated proteins and 210 up-regulated proteins in the BI-TK group after treatment. Strikingly, a novel molecule Prx- I drew our particular attention, with a 0.52-fold decrease in the BI-TK group versus the normal saline group. A schematic diagram of iTRAQ is shown in Figure 1A, and the MS/MS spectrum of Prx- I (peptide sequence: VVGDHVEVHAR) is shown in Figure 1B. The iTRAQ tags are as follows: (i) the normal saline group, 114 tags; (ii) the BI-TK group, 115 tags; (iii) the BI/PGEX-1 group, 116 tags; (iv) the BI group, 117 tags. The protein ID in IPI, name and main functions with abundance changes are epitomized in Table S1.


Proteomic analysis of bladder cancer indicates Prx-I as a key molecule in BI-TK/GCV treatment system.

Jiang L, Xiao X, Ren J, Tang Y, Weng H, Yang Q, Wu M, Tang W - PLoS ONE (2014)

Experimental design of proteome analysis after treatment using iTRAQ labeling.A: Schematic diagram showing the workflow of iTRAQ. B: MS/MS spectrum showing the peptides of Prx-I (peptide sequence: VVGGDHVEVHAR). The 4 peak contours describe that the sample volumes are the same which guarantees the results are authentic and reliable.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4048271&req=5

pone-0098764-g001: Experimental design of proteome analysis after treatment using iTRAQ labeling.A: Schematic diagram showing the workflow of iTRAQ. B: MS/MS spectrum showing the peptides of Prx-I (peptide sequence: VVGGDHVEVHAR). The 4 peak contours describe that the sample volumes are the same which guarantees the results are authentic and reliable.
Mentions: A total of 2343 unique proteins were identified with 95% confidence by the ProteinPilot search algorithm against the IPI rat protein database v3.49. A strict cutoff value of a 1.3-fold change resulted in a final set of 402 differentially expressed proteins, including 192 down-regulated proteins and 210 up-regulated proteins in the BI-TK group after treatment. Strikingly, a novel molecule Prx- I drew our particular attention, with a 0.52-fold decrease in the BI-TK group versus the normal saline group. A schematic diagram of iTRAQ is shown in Figure 1A, and the MS/MS spectrum of Prx- I (peptide sequence: VVGDHVEVHAR) is shown in Figure 1B. The iTRAQ tags are as follows: (i) the normal saline group, 114 tags; (ii) the BI-TK group, 115 tags; (iii) the BI/PGEX-1 group, 116 tags; (iv) the BI group, 117 tags. The protein ID in IPI, name and main functions with abundance changes are epitomized in Table S1.

Bottom Line: In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats.Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment.Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA).

View Article: PubMed Central - PubMed

Affiliation: Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

ABSTRACT
In order to understand the molecular mechanisms of Bifidobacterium infantis thymidine kinase/nucleoside analogue ganciclovir (BI-TK/GCV) treatment system which was proven to exhibit sustainable anti-tumor growth activity and induce apoptosis in bladder cancer, a proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. 192 down-regulated and 210 up-regulated proteins were identified after treatment with BI-TK/GCV system in Sprague-Dawley (SD) rats. Western blot analysis and immunohistochemistry analysis confirmed that Peroxiredoxin-I (Prx-I) was significantly down-regulated in bladder cancer after treatment. Prx-I silencing by transfection of Prx-I shRNA significantly suppressed growth, promoted apoptosis and regulated the cell cycle in T24 cells and reduced the phospho-NF-κB p50 and p65 protein expression which revealed the links between Prx-I and NF-κB pathway implied by Ingenuity pathway analysis (IPA). These findings yield new insights into the therapy of bladder cancer, revealing Prx-I as a new therapeutic target and indicating BI-TK/GCV system as a prospective therapy by down-regulation of Prx-I through NF-κB signaling pathway.

Show MeSH
Related in: MedlinePlus