Limits...
Low molecular weight procyanidins from grape seeds enhance the impact of 5-Fluorouracil chemotherapy on Caco-2 human colon cancer cells.

Cheah KY, Howarth GS, Bindon KA, Kennedy JA, Bastian SE - PLoS ONE (2014)

Bottom Line: All isolated fractions significantly reduced Caco-2 cell viability compared to the control (P<0.05), but F2 and F3 (mDP 2-6) were the most active fractions (immature F2 = 32% mDP 2.4, F3 = 35% mDP 5.8 and mature F2 = 13% mDP 3.6 and F3 = 17% mDP 5.9; percentage of viable cells remaining) on Caco-2 cells.When combined with 5-FU, immature fractions F1-F3 enhanced the cell toxicity effects of 5-FU by 27-73% (P<0.05).Moreover, some fractions alone were more potent at decreasing viability in Caco-2 cells (P<0.05; immature fractions = 65-68% and mature fractions = 83-87%) compared to 5-FU alone (37%).

View Article: PubMed Central - PubMed

Affiliation: Wine Science and Business Group, School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, Australia; Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service, North Adelaide, Australia.

ABSTRACT

Objective: Grape seed procyanidins (PC) are flavan-3-ol oligomers and polymers known for their biological activity in the gut. Grape seed extract (GSE) have been reported to reduce intestinal injury in a rat model of mucositis. We sought to investigate effects of purified PC fractions differing in mean degree of polymerization (mDP) combined with 5-Fluorouracil (5-FU) chemotherapy on the viability of colon cancer cells (Caco-2).

Design: SixPC fractions (F1-F6) were isolated from Cabernet Sauvignon seeds at two ripeness stages: pre-veraison unripe (immature) and ripe (mature), utilizing step gradient, low-pressure chromatography on a Sephadex LH-20 resin. Fractions were tested on Caco-2 cells, alone and in combination with 5-FU. Eluted fractions were characterized by phloroglucinolysis and gel permeation chromatography. Cell viability was determined by the 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide) (MTT) assay.

Results: All isolated fractions significantly reduced Caco-2 cell viability compared to the control (P<0.05), but F2 and F3 (mDP 2-6) were the most active fractions (immature F2 = 32% mDP 2.4, F3 = 35% mDP 5.8 and mature F2 = 13% mDP 3.6 and F3 = 17% mDP 5.9; percentage of viable cells remaining) on Caco-2 cells. When combined with 5-FU, immature fractions F1-F3 enhanced the cell toxicity effects of 5-FU by 27-73% (P<0.05). Mature seed PC fractions (F1-F4) significantly enhanced the toxicity of 5-FU by 60-83% against Caco-2 cells (P<0.05). Moreover, some fractions alone were more potent at decreasing viability in Caco-2 cells (P<0.05; immature fractions = 65-68% and mature fractions = 83-87%) compared to 5-FU alone (37%).

Conclusions: PCs of mDP 2-6 (immature F1-F3 and mature F1 and F4)not only enhanced the impact of 5-FU in killing Caco-2 cells, but also surpassed standard 5-FU chemotherapy as an anti-cancer agent.The bioactivity of PC is therefore attributed primarily to lower molecular weight PCs.

Show MeSH

Related in: MedlinePlus

Combined effects of immature (A) and mature (B) fractions and 5-FU on Caco-2 cells for 72 hr measured by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.Data are presented as percentage of cell viability relative to viability of control cells. Data are expressed as mean ± SEM of 3 independent experiments. Statistical analysis was determined by two-way ANOVA with Tukey'spost-hoc test. Values with different letters (a,b,c) in each column were statistically different at P<0.05. * indicates significant difference in 5-FU treated group when compared to 5-FU control.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4048230&req=5

pone-0098921-g003: Combined effects of immature (A) and mature (B) fractions and 5-FU on Caco-2 cells for 72 hr measured by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.Data are presented as percentage of cell viability relative to viability of control cells. Data are expressed as mean ± SEM of 3 independent experiments. Statistical analysis was determined by two-way ANOVA with Tukey'spost-hoc test. Values with different letters (a,b,c) in each column were statistically different at P<0.05. * indicates significant difference in 5-FU treated group when compared to 5-FU control.

Mentions: The combined effect of seed fractions and 5-FU on Caco-2 cells was investigated (Figure 3). For immature seed fractions, the viability of Caco-2 cells was significantly inhibited by all seed fractions (Figure 3A). Compared to GSE (67%), F2 and F3 of immature seed extracts were more toxic to Caco-2 cells (F2, 32% and F3, 35% of control value, P<0.05). However, when seed fractions were present with 5-FU (100 uM), the growth inhibitory effects of 5-FU were significantly enhanced (P<0.05) (Figure 3A). 5-FU significantly reduced cell viability to 62% of control values (P<0.05). F1-F3 significantly enhanced the growth inhibitory activity of 5-FU (27%, 73% and 56% respectively compared to 5-FU control; P<0.05). F2 could therefore be considered a more potent chemotherapy agent than unfractionated commercially available GSE, which only enhanced the growth inhibitory effect of 5-FU by 55% (P<0.05; compared to 5-FU control). Moreover, we also found that immature F2 (32%) and F3 (35%) were more potent than 5-FU (62% of control value; P<0.05) at reducing Caco-2 viability.


Low molecular weight procyanidins from grape seeds enhance the impact of 5-Fluorouracil chemotherapy on Caco-2 human colon cancer cells.

Cheah KY, Howarth GS, Bindon KA, Kennedy JA, Bastian SE - PLoS ONE (2014)

Combined effects of immature (A) and mature (B) fractions and 5-FU on Caco-2 cells for 72 hr measured by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.Data are presented as percentage of cell viability relative to viability of control cells. Data are expressed as mean ± SEM of 3 independent experiments. Statistical analysis was determined by two-way ANOVA with Tukey'spost-hoc test. Values with different letters (a,b,c) in each column were statistically different at P<0.05. * indicates significant difference in 5-FU treated group when compared to 5-FU control.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4048230&req=5

pone-0098921-g003: Combined effects of immature (A) and mature (B) fractions and 5-FU on Caco-2 cells for 72 hr measured by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.Data are presented as percentage of cell viability relative to viability of control cells. Data are expressed as mean ± SEM of 3 independent experiments. Statistical analysis was determined by two-way ANOVA with Tukey'spost-hoc test. Values with different letters (a,b,c) in each column were statistically different at P<0.05. * indicates significant difference in 5-FU treated group when compared to 5-FU control.
Mentions: The combined effect of seed fractions and 5-FU on Caco-2 cells was investigated (Figure 3). For immature seed fractions, the viability of Caco-2 cells was significantly inhibited by all seed fractions (Figure 3A). Compared to GSE (67%), F2 and F3 of immature seed extracts were more toxic to Caco-2 cells (F2, 32% and F3, 35% of control value, P<0.05). However, when seed fractions were present with 5-FU (100 uM), the growth inhibitory effects of 5-FU were significantly enhanced (P<0.05) (Figure 3A). 5-FU significantly reduced cell viability to 62% of control values (P<0.05). F1-F3 significantly enhanced the growth inhibitory activity of 5-FU (27%, 73% and 56% respectively compared to 5-FU control; P<0.05). F2 could therefore be considered a more potent chemotherapy agent than unfractionated commercially available GSE, which only enhanced the growth inhibitory effect of 5-FU by 55% (P<0.05; compared to 5-FU control). Moreover, we also found that immature F2 (32%) and F3 (35%) were more potent than 5-FU (62% of control value; P<0.05) at reducing Caco-2 viability.

Bottom Line: All isolated fractions significantly reduced Caco-2 cell viability compared to the control (P<0.05), but F2 and F3 (mDP 2-6) were the most active fractions (immature F2 = 32% mDP 2.4, F3 = 35% mDP 5.8 and mature F2 = 13% mDP 3.6 and F3 = 17% mDP 5.9; percentage of viable cells remaining) on Caco-2 cells.When combined with 5-FU, immature fractions F1-F3 enhanced the cell toxicity effects of 5-FU by 27-73% (P<0.05).Moreover, some fractions alone were more potent at decreasing viability in Caco-2 cells (P<0.05; immature fractions = 65-68% and mature fractions = 83-87%) compared to 5-FU alone (37%).

View Article: PubMed Central - PubMed

Affiliation: Wine Science and Business Group, School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, Australia; Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service, North Adelaide, Australia.

ABSTRACT

Objective: Grape seed procyanidins (PC) are flavan-3-ol oligomers and polymers known for their biological activity in the gut. Grape seed extract (GSE) have been reported to reduce intestinal injury in a rat model of mucositis. We sought to investigate effects of purified PC fractions differing in mean degree of polymerization (mDP) combined with 5-Fluorouracil (5-FU) chemotherapy on the viability of colon cancer cells (Caco-2).

Design: SixPC fractions (F1-F6) were isolated from Cabernet Sauvignon seeds at two ripeness stages: pre-veraison unripe (immature) and ripe (mature), utilizing step gradient, low-pressure chromatography on a Sephadex LH-20 resin. Fractions were tested on Caco-2 cells, alone and in combination with 5-FU. Eluted fractions were characterized by phloroglucinolysis and gel permeation chromatography. Cell viability was determined by the 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide) (MTT) assay.

Results: All isolated fractions significantly reduced Caco-2 cell viability compared to the control (P<0.05), but F2 and F3 (mDP 2-6) were the most active fractions (immature F2 = 32% mDP 2.4, F3 = 35% mDP 5.8 and mature F2 = 13% mDP 3.6 and F3 = 17% mDP 5.9; percentage of viable cells remaining) on Caco-2 cells. When combined with 5-FU, immature fractions F1-F3 enhanced the cell toxicity effects of 5-FU by 27-73% (P<0.05). Mature seed PC fractions (F1-F4) significantly enhanced the toxicity of 5-FU by 60-83% against Caco-2 cells (P<0.05). Moreover, some fractions alone were more potent at decreasing viability in Caco-2 cells (P<0.05; immature fractions = 65-68% and mature fractions = 83-87%) compared to 5-FU alone (37%).

Conclusions: PCs of mDP 2-6 (immature F1-F3 and mature F1 and F4)not only enhanced the impact of 5-FU in killing Caco-2 cells, but also surpassed standard 5-FU chemotherapy as an anti-cancer agent.The bioactivity of PC is therefore attributed primarily to lower molecular weight PCs.

Show MeSH
Related in: MedlinePlus