Limits...
Do flower color and floral scent of silene species affect host preference of Hadena bicruris, a seed-eating pollinator, under field conditions?

Page P, Favre A, Schiestl FP, Karrenberg S - PLoS ONE (2014)

Bottom Line: Emission of these compounds did not differ significantly between the two Silene species.Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia.This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.

View Article: PubMed Central - PubMed

Affiliation: ETH Zurich, Institute of Integrative Biology (IBZ), Zurich, Switzerland.

ABSTRACT
Specialization in plant-insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.

Show MeSH

Related in: MedlinePlus

Flowering phenology and seed predation risk.(a) Flowering phenology as the total number of female plants in flower in field-transplanted crosses within Silene dioica, within S. latifolia and in second-generation (F2) hybrids between these species; data are presented for the entire experimental field and for a subset of plants used for scent analyses, i.e. those that had newly opening flowers on scent sampling days. (b) Seed predation risk over time, expressed as the incidence of seed predation by the moth Hadena bicruris in a subset of F2 individuals that flowered only for one week such that host choice must have occurred during that week. Days of data collection on flowers are indicated as upward-facing tick marks.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4048206&req=5

pone-0098755-g001: Flowering phenology and seed predation risk.(a) Flowering phenology as the total number of female plants in flower in field-transplanted crosses within Silene dioica, within S. latifolia and in second-generation (F2) hybrids between these species; data are presented for the entire experimental field and for a subset of plants used for scent analyses, i.e. those that had newly opening flowers on scent sampling days. (b) Seed predation risk over time, expressed as the incidence of seed predation by the moth Hadena bicruris in a subset of F2 individuals that flowered only for one week such that host choice must have occurred during that week. Days of data collection on flowers are indicated as upward-facing tick marks.

Mentions: Overall, about two thirds of the experimental plants of S. dioica, S. latifolia and F2 hybrids survived the winter after transplantation and flowered in the following year (2008) where this study was conducted; 48% of the individuals were females (for a detailed account see Table S3). We considered only female plants in this study comprising 31 S. dioica (14 families), 33 S. latifolia (14 families), and 185 F2 hybrids (36 families, compare Table S3). We visited the site every 6 to 11 days during the reproductive phase of the experimental plants (in total 13 times, compare Fig. 1) to score whether or not individuals flowered (at each visit), total flower number (at the end of flowering for each plant), flower color (see below) and seed predation by H. bicruris (see below). Each plant was thus checked at all visits. Two S. dioica individuals, three S. latifolia individuals and six F2 individuals could not be scored for seed predation due to herbivory by other animals. We missed flower color for 12 S. dioica, five S. latifolia and 34 F2 individuals because no open flowers were available on the day of scoring (for detailed accounts of survival, flowering and families used for the different measurements see Table S3).


Do flower color and floral scent of silene species affect host preference of Hadena bicruris, a seed-eating pollinator, under field conditions?

Page P, Favre A, Schiestl FP, Karrenberg S - PLoS ONE (2014)

Flowering phenology and seed predation risk.(a) Flowering phenology as the total number of female plants in flower in field-transplanted crosses within Silene dioica, within S. latifolia and in second-generation (F2) hybrids between these species; data are presented for the entire experimental field and for a subset of plants used for scent analyses, i.e. those that had newly opening flowers on scent sampling days. (b) Seed predation risk over time, expressed as the incidence of seed predation by the moth Hadena bicruris in a subset of F2 individuals that flowered only for one week such that host choice must have occurred during that week. Days of data collection on flowers are indicated as upward-facing tick marks.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4048206&req=5

pone-0098755-g001: Flowering phenology and seed predation risk.(a) Flowering phenology as the total number of female plants in flower in field-transplanted crosses within Silene dioica, within S. latifolia and in second-generation (F2) hybrids between these species; data are presented for the entire experimental field and for a subset of plants used for scent analyses, i.e. those that had newly opening flowers on scent sampling days. (b) Seed predation risk over time, expressed as the incidence of seed predation by the moth Hadena bicruris in a subset of F2 individuals that flowered only for one week such that host choice must have occurred during that week. Days of data collection on flowers are indicated as upward-facing tick marks.
Mentions: Overall, about two thirds of the experimental plants of S. dioica, S. latifolia and F2 hybrids survived the winter after transplantation and flowered in the following year (2008) where this study was conducted; 48% of the individuals were females (for a detailed account see Table S3). We considered only female plants in this study comprising 31 S. dioica (14 families), 33 S. latifolia (14 families), and 185 F2 hybrids (36 families, compare Table S3). We visited the site every 6 to 11 days during the reproductive phase of the experimental plants (in total 13 times, compare Fig. 1) to score whether or not individuals flowered (at each visit), total flower number (at the end of flowering for each plant), flower color (see below) and seed predation by H. bicruris (see below). Each plant was thus checked at all visits. Two S. dioica individuals, three S. latifolia individuals and six F2 individuals could not be scored for seed predation due to herbivory by other animals. We missed flower color for 12 S. dioica, five S. latifolia and 34 F2 individuals because no open flowers were available on the day of scoring (for detailed accounts of survival, flowering and families used for the different measurements see Table S3).

Bottom Line: Emission of these compounds did not differ significantly between the two Silene species.Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia.This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.

View Article: PubMed Central - PubMed

Affiliation: ETH Zurich, Institute of Integrative Biology (IBZ), Zurich, Switzerland.

ABSTRACT
Specialization in plant-insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.

Show MeSH
Related in: MedlinePlus