Limits...
Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement.

Toh TC, Ng CS, Peh JW, Toh KB, Chou LM - PLoS ONE (2014)

Bottom Line: The benefits of feeding were apparent even after transplantation to the reef.Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities.Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls.

View Article: PubMed Central - PubMed

Affiliation: Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.

ABSTRACT
Size-dependent mortality influences the recolonization success of juvenile corals transplanted for reef restoration and assisting juvenile corals attain a refuge size would thus improve post-transplantation survivorship. To explore colony size augmentation strategies, recruits of the scleractinian coral Pocillopora damicornis were fed with live Artemia salina nauplii twice a week for 24 weeks in an ex situ coral nursery. Fed recruits grew significantly faster than unfed ones, with corals in the 3600, 1800, 600 and 0 (control) nauplii/L groups exhibiting volumetric growth rates of 10.65 ± 1.46, 4.69 ± 0.9, 3.64 ± 0.55 and 1.18 ± 0.37 mm3/week, respectively. Corals supplied with the highest density of nauplii increased their ecological volume by more than 74 times their initial size, achieving a mean final volume of 248.38 ± 33.44 mm3. The benefits of feeding were apparent even after transplantation to the reef. The corals in the 3600, 1800, 600 and 0 nauplii/L groups grew to final sizes of 4875 ± 260 mm3, 2036 ± 627 mm3, 1066 ± 70 mm3 and 512 ± 116 mm3, respectively. The fed corals had significantly higher survival rates than the unfed ones after transplantation (63%, 59%, 56% and 38% for the 3600, 1800, 600 and 0 nauplii/L treatments respectively). Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities. Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls. This study demonstrated that nutrition enhancement can augment coral growth and post-transplantation survival, and is a biologically and economically viable option that can be used to supplement existing coral mariculture procedures and enhance reef restoration outcomes.

Show MeSH
Survivorship of Pocillopora damicornis juveniles.Survival curves of Pocillopora damicornis juveniles in the 0 (control), 600, 1800 and 3600 nauplii/L groups (a) in the ex situ feeding phase (24 weeks, n = 72) and (b) after transplantation (24 weeks, n = 32).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4045716&req=5

pone-0098529-g004: Survivorship of Pocillopora damicornis juveniles.Survival curves of Pocillopora damicornis juveniles in the 0 (control), 600, 1800 and 3600 nauplii/L groups (a) in the ex situ feeding phase (24 weeks, n = 72) and (b) after transplantation (24 weeks, n = 32).

Mentions: In the ex situ feeding phase (Fig. 4a), there were no significant differences in survivorship across treatments (logrank test = 1.22, d.f. = 1, p = 0.27). Survival rates of the P. damicornis juveniles in the control, 600, 1800 and 3600 nauplii/L groups at the end of 24 weeks were 45%, 54%, 58% and 47% respectively, and the overall survival was 51%. Corals in the control, 600, 1800 and 3600 nauplii/L groups had post-transplantation survival rates of 38%, 56%, 59% and 63% respectively (overall survival of 54%), and these were significantly different across treatments (Fig. 4b).


Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement.

Toh TC, Ng CS, Peh JW, Toh KB, Chou LM - PLoS ONE (2014)

Survivorship of Pocillopora damicornis juveniles.Survival curves of Pocillopora damicornis juveniles in the 0 (control), 600, 1800 and 3600 nauplii/L groups (a) in the ex situ feeding phase (24 weeks, n = 72) and (b) after transplantation (24 weeks, n = 32).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4045716&req=5

pone-0098529-g004: Survivorship of Pocillopora damicornis juveniles.Survival curves of Pocillopora damicornis juveniles in the 0 (control), 600, 1800 and 3600 nauplii/L groups (a) in the ex situ feeding phase (24 weeks, n = 72) and (b) after transplantation (24 weeks, n = 32).
Mentions: In the ex situ feeding phase (Fig. 4a), there were no significant differences in survivorship across treatments (logrank test = 1.22, d.f. = 1, p = 0.27). Survival rates of the P. damicornis juveniles in the control, 600, 1800 and 3600 nauplii/L groups at the end of 24 weeks were 45%, 54%, 58% and 47% respectively, and the overall survival was 51%. Corals in the control, 600, 1800 and 3600 nauplii/L groups had post-transplantation survival rates of 38%, 56%, 59% and 63% respectively (overall survival of 54%), and these were significantly different across treatments (Fig. 4b).

Bottom Line: The benefits of feeding were apparent even after transplantation to the reef.Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities.Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls.

View Article: PubMed Central - PubMed

Affiliation: Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.

ABSTRACT
Size-dependent mortality influences the recolonization success of juvenile corals transplanted for reef restoration and assisting juvenile corals attain a refuge size would thus improve post-transplantation survivorship. To explore colony size augmentation strategies, recruits of the scleractinian coral Pocillopora damicornis were fed with live Artemia salina nauplii twice a week for 24 weeks in an ex situ coral nursery. Fed recruits grew significantly faster than unfed ones, with corals in the 3600, 1800, 600 and 0 (control) nauplii/L groups exhibiting volumetric growth rates of 10.65 ± 1.46, 4.69 ± 0.9, 3.64 ± 0.55 and 1.18 ± 0.37 mm3/week, respectively. Corals supplied with the highest density of nauplii increased their ecological volume by more than 74 times their initial size, achieving a mean final volume of 248.38 ± 33.44 mm3. The benefits of feeding were apparent even after transplantation to the reef. The corals in the 3600, 1800, 600 and 0 nauplii/L groups grew to final sizes of 4875 ± 260 mm3, 2036 ± 627 mm3, 1066 ± 70 mm3 and 512 ± 116 mm3, respectively. The fed corals had significantly higher survival rates than the unfed ones after transplantation (63%, 59%, 56% and 38% for the 3600, 1800, 600 and 0 nauplii/L treatments respectively). Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities. Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls. This study demonstrated that nutrition enhancement can augment coral growth and post-transplantation survival, and is a biologically and economically viable option that can be used to supplement existing coral mariculture procedures and enhance reef restoration outcomes.

Show MeSH