Limits...
Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement.

Toh TC, Ng CS, Peh JW, Toh KB, Chou LM - PLoS ONE (2014)

Bottom Line: The benefits of feeding were apparent even after transplantation to the reef.Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities.Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls.

View Article: PubMed Central - PubMed

Affiliation: Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.

ABSTRACT
Size-dependent mortality influences the recolonization success of juvenile corals transplanted for reef restoration and assisting juvenile corals attain a refuge size would thus improve post-transplantation survivorship. To explore colony size augmentation strategies, recruits of the scleractinian coral Pocillopora damicornis were fed with live Artemia salina nauplii twice a week for 24 weeks in an ex situ coral nursery. Fed recruits grew significantly faster than unfed ones, with corals in the 3600, 1800, 600 and 0 (control) nauplii/L groups exhibiting volumetric growth rates of 10.65 ± 1.46, 4.69 ± 0.9, 3.64 ± 0.55 and 1.18 ± 0.37 mm3/week, respectively. Corals supplied with the highest density of nauplii increased their ecological volume by more than 74 times their initial size, achieving a mean final volume of 248.38 ± 33.44 mm3. The benefits of feeding were apparent even after transplantation to the reef. The corals in the 3600, 1800, 600 and 0 nauplii/L groups grew to final sizes of 4875 ± 260 mm3, 2036 ± 627 mm3, 1066 ± 70 mm3 and 512 ± 116 mm3, respectively. The fed corals had significantly higher survival rates than the unfed ones after transplantation (63%, 59%, 56% and 38% for the 3600, 1800, 600 and 0 nauplii/L treatments respectively). Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities. Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls. This study demonstrated that nutrition enhancement can augment coral growth and post-transplantation survival, and is a biologically and economically viable option that can be used to supplement existing coral mariculture procedures and enhance reef restoration outcomes.

Show MeSH
Growth of Pocillopora damicornis juveniles over 24 weeks after transplantation to the reef.Graphs show the (a) mean ecological volumes, (b) mean weekly radial and (c) volumetric growth rates (± S.E.) of juvenile Pocillopora damicornis in the 0 (control), 600, 1800 and 3600 Artemia nauplii/L treatment groups. The symbols *, **, and *** denote statistical significance at p = 0.05, p = 0.01, p = 0.001 respectively.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4045716&req=5

pone-0098529-g003: Growth of Pocillopora damicornis juveniles over 24 weeks after transplantation to the reef.Graphs show the (a) mean ecological volumes, (b) mean weekly radial and (c) volumetric growth rates (± S.E.) of juvenile Pocillopora damicornis in the 0 (control), 600, 1800 and 3600 Artemia nauplii/L treatment groups. The symbols *, **, and *** denote statistical significance at p = 0.05, p = 0.01, p = 0.001 respectively.

Mentions: The mean colony sizes of all juvenile corals continued to increase steadily after transplantation to the reef (Fig. 2; Fig. 3a), with the colonies in the 3600 nauplii/L treatment group exhibiting the largest increase in size (1534 times the initial size at the start of the study). Final mean colony volumes for the 0, 600 1800 and 3600 nauplii/L groups were 512±116 mm3 (mean ± S.E.; 137 times the initial volume; 5.03±0.49 mm radius), 1066±70 mm3 (284 times the initial volume; 6.35±0.14 mm radius), 2036±627 mm3 (486 times the initial volume; 7.25±0.80 mm radius) and 4875±260 mm3 (10.5±0.29 mm radius), respectively.


Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement.

Toh TC, Ng CS, Peh JW, Toh KB, Chou LM - PLoS ONE (2014)

Growth of Pocillopora damicornis juveniles over 24 weeks after transplantation to the reef.Graphs show the (a) mean ecological volumes, (b) mean weekly radial and (c) volumetric growth rates (± S.E.) of juvenile Pocillopora damicornis in the 0 (control), 600, 1800 and 3600 Artemia nauplii/L treatment groups. The symbols *, **, and *** denote statistical significance at p = 0.05, p = 0.01, p = 0.001 respectively.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4045716&req=5

pone-0098529-g003: Growth of Pocillopora damicornis juveniles over 24 weeks after transplantation to the reef.Graphs show the (a) mean ecological volumes, (b) mean weekly radial and (c) volumetric growth rates (± S.E.) of juvenile Pocillopora damicornis in the 0 (control), 600, 1800 and 3600 Artemia nauplii/L treatment groups. The symbols *, **, and *** denote statistical significance at p = 0.05, p = 0.01, p = 0.001 respectively.
Mentions: The mean colony sizes of all juvenile corals continued to increase steadily after transplantation to the reef (Fig. 2; Fig. 3a), with the colonies in the 3600 nauplii/L treatment group exhibiting the largest increase in size (1534 times the initial size at the start of the study). Final mean colony volumes for the 0, 600 1800 and 3600 nauplii/L groups were 512±116 mm3 (mean ± S.E.; 137 times the initial volume; 5.03±0.49 mm radius), 1066±70 mm3 (284 times the initial volume; 6.35±0.14 mm radius), 2036±627 mm3 (486 times the initial volume; 7.25±0.80 mm radius) and 4875±260 mm3 (10.5±0.29 mm radius), respectively.

Bottom Line: The benefits of feeding were apparent even after transplantation to the reef.Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities.Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls.

View Article: PubMed Central - PubMed

Affiliation: Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.

ABSTRACT
Size-dependent mortality influences the recolonization success of juvenile corals transplanted for reef restoration and assisting juvenile corals attain a refuge size would thus improve post-transplantation survivorship. To explore colony size augmentation strategies, recruits of the scleractinian coral Pocillopora damicornis were fed with live Artemia salina nauplii twice a week for 24 weeks in an ex situ coral nursery. Fed recruits grew significantly faster than unfed ones, with corals in the 3600, 1800, 600 and 0 (control) nauplii/L groups exhibiting volumetric growth rates of 10.65 ± 1.46, 4.69 ± 0.9, 3.64 ± 0.55 and 1.18 ± 0.37 mm3/week, respectively. Corals supplied with the highest density of nauplii increased their ecological volume by more than 74 times their initial size, achieving a mean final volume of 248.38 ± 33.44 mm3. The benefits of feeding were apparent even after transplantation to the reef. The corals in the 3600, 1800, 600 and 0 nauplii/L groups grew to final sizes of 4875 ± 260 mm3, 2036 ± 627 mm3, 1066 ± 70 mm3 and 512 ± 116 mm3, respectively. The fed corals had significantly higher survival rates than the unfed ones after transplantation (63%, 59%, 56% and 38% for the 3600, 1800, 600 and 0 nauplii/L treatments respectively). Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities. Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls. This study demonstrated that nutrition enhancement can augment coral growth and post-transplantation survival, and is a biologically and economically viable option that can be used to supplement existing coral mariculture procedures and enhance reef restoration outcomes.

Show MeSH