Limits...
Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement.

Toh TC, Ng CS, Peh JW, Toh KB, Chou LM - PLoS ONE (2014)

Bottom Line: The benefits of feeding were apparent even after transplantation to the reef.Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities.Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls.

View Article: PubMed Central - PubMed

Affiliation: Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.

ABSTRACT
Size-dependent mortality influences the recolonization success of juvenile corals transplanted for reef restoration and assisting juvenile corals attain a refuge size would thus improve post-transplantation survivorship. To explore colony size augmentation strategies, recruits of the scleractinian coral Pocillopora damicornis were fed with live Artemia salina nauplii twice a week for 24 weeks in an ex situ coral nursery. Fed recruits grew significantly faster than unfed ones, with corals in the 3600, 1800, 600 and 0 (control) nauplii/L groups exhibiting volumetric growth rates of 10.65 ± 1.46, 4.69 ± 0.9, 3.64 ± 0.55 and 1.18 ± 0.37 mm3/week, respectively. Corals supplied with the highest density of nauplii increased their ecological volume by more than 74 times their initial size, achieving a mean final volume of 248.38 ± 33.44 mm3. The benefits of feeding were apparent even after transplantation to the reef. The corals in the 3600, 1800, 600 and 0 nauplii/L groups grew to final sizes of 4875 ± 260 mm3, 2036 ± 627 mm3, 1066 ± 70 mm3 and 512 ± 116 mm3, respectively. The fed corals had significantly higher survival rates than the unfed ones after transplantation (63%, 59%, 56% and 38% for the 3600, 1800, 600 and 0 nauplii/L treatments respectively). Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities. Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls. This study demonstrated that nutrition enhancement can augment coral growth and post-transplantation survival, and is a biologically and economically viable option that can be used to supplement existing coral mariculture procedures and enhance reef restoration outcomes.

Show MeSH
Growth of Pocillopora damicornis juveniles over a 24-week ex situ feeding regime.Graphs show the (a) mean ecological volumes, (b) mean weekly radial and (c) volumetric growth rates (± S.E.) of the corals in the 0 (control), 600, 1800 and 3600 nauplii/L treatment groups. The symbols *, **, and *** denote statistical significance at p = 0.05, p = 0.01, p = 0.001 respectively.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4045716&req=5

pone-0098529-g001: Growth of Pocillopora damicornis juveniles over a 24-week ex situ feeding regime.Graphs show the (a) mean ecological volumes, (b) mean weekly radial and (c) volumetric growth rates (± S.E.) of the corals in the 0 (control), 600, 1800 and 3600 nauplii/L treatment groups. The symbols *, **, and *** denote statistical significance at p = 0.05, p = 0.01, p = 0.001 respectively.

Mentions: The initial mean colony volume of the coral juveniles (approximately 3.5 mm3) did not differ significantly among the treatment groups (F3,12 = 0.687, p = 0.557). The mean colony volume across the treatments increased monotonically over the ex situ feeding phase of the study (Fig. 1a; Fig. 2). Juvenile corals in the 3600 nauplii/L treatment group grew by more than 74 times their initial sizes and attained a mean final ecological volume of 248.38±33.44 mm3 (mean ± S.E.; 4.03±0.18 mm radius). The final volumes of the colonies in the 1800, 600 and 0 nauplii/L were 111.66±20.8 mm3 (34 times the initial volume; 3.63±0.25 mm radius), 87.18±12.91 mm3 (24 times the initial volume; 2.78±0.12 mm radius) and 30.65±8.65 mm3 (8 times the initial volume; 2.13±0.05 mm radius), respectively.


Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement.

Toh TC, Ng CS, Peh JW, Toh KB, Chou LM - PLoS ONE (2014)

Growth of Pocillopora damicornis juveniles over a 24-week ex situ feeding regime.Graphs show the (a) mean ecological volumes, (b) mean weekly radial and (c) volumetric growth rates (± S.E.) of the corals in the 0 (control), 600, 1800 and 3600 nauplii/L treatment groups. The symbols *, **, and *** denote statistical significance at p = 0.05, p = 0.01, p = 0.001 respectively.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4045716&req=5

pone-0098529-g001: Growth of Pocillopora damicornis juveniles over a 24-week ex situ feeding regime.Graphs show the (a) mean ecological volumes, (b) mean weekly radial and (c) volumetric growth rates (± S.E.) of the corals in the 0 (control), 600, 1800 and 3600 nauplii/L treatment groups. The symbols *, **, and *** denote statistical significance at p = 0.05, p = 0.01, p = 0.001 respectively.
Mentions: The initial mean colony volume of the coral juveniles (approximately 3.5 mm3) did not differ significantly among the treatment groups (F3,12 = 0.687, p = 0.557). The mean colony volume across the treatments increased monotonically over the ex situ feeding phase of the study (Fig. 1a; Fig. 2). Juvenile corals in the 3600 nauplii/L treatment group grew by more than 74 times their initial sizes and attained a mean final ecological volume of 248.38±33.44 mm3 (mean ± S.E.; 4.03±0.18 mm radius). The final volumes of the colonies in the 1800, 600 and 0 nauplii/L were 111.66±20.8 mm3 (34 times the initial volume; 3.63±0.25 mm radius), 87.18±12.91 mm3 (24 times the initial volume; 2.78±0.12 mm radius) and 30.65±8.65 mm3 (8 times the initial volume; 2.13±0.05 mm radius), respectively.

Bottom Line: The benefits of feeding were apparent even after transplantation to the reef.Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities.Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls.

View Article: PubMed Central - PubMed

Affiliation: Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.

ABSTRACT
Size-dependent mortality influences the recolonization success of juvenile corals transplanted for reef restoration and assisting juvenile corals attain a refuge size would thus improve post-transplantation survivorship. To explore colony size augmentation strategies, recruits of the scleractinian coral Pocillopora damicornis were fed with live Artemia salina nauplii twice a week for 24 weeks in an ex situ coral nursery. Fed recruits grew significantly faster than unfed ones, with corals in the 3600, 1800, 600 and 0 (control) nauplii/L groups exhibiting volumetric growth rates of 10.65 ± 1.46, 4.69 ± 0.9, 3.64 ± 0.55 and 1.18 ± 0.37 mm3/week, respectively. Corals supplied with the highest density of nauplii increased their ecological volume by more than 74 times their initial size, achieving a mean final volume of 248.38 ± 33.44 mm3. The benefits of feeding were apparent even after transplantation to the reef. The corals in the 3600, 1800, 600 and 0 nauplii/L groups grew to final sizes of 4875 ± 260 mm3, 2036 ± 627 mm3, 1066 ± 70 mm3 and 512 ± 116 mm3, respectively. The fed corals had significantly higher survival rates than the unfed ones after transplantation (63%, 59%, 56% and 38% for the 3600, 1800, 600 and 0 nauplii/L treatments respectively). Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities. Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3), and were more than 12 times cheaper than the controls. This study demonstrated that nutrition enhancement can augment coral growth and post-transplantation survival, and is a biologically and economically viable option that can be used to supplement existing coral mariculture procedures and enhance reef restoration outcomes.

Show MeSH