Limits...
An individual-based model of transmission of resistant bacteria in a veterinary teaching hospital.

Suthar N, Roy S, Call DR, Besser TE, Davis MA - PLoS ONE (2014)

Bottom Line: The model was parameterized using data obtained from hospital records, information obtained by interviews with hospital staff, and the published literature.The model suggested that transmission resulting from contact with healthcare workers was common, and that certain transmission points (housing wards, diagnostics room, and the intensive care unit) presented higher risk for transmission than others (lobby and surgery).Sensitivity analyses using a range of parameter values demonstrated that the risk of acquisition of colonization by resistant pathogens decreased with shorter patient hospital stays (P<0.0001), more frequent decontamination of transmission points and disinfection of healthcare workers (P<0.0001) and better compliance of healthcare workers with hygiene practices (P<0.0001).

View Article: PubMed Central - PubMed

Affiliation: Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.

ABSTRACT
Veterinary nosocomial infections caused by antibiotic resistant bacteria cause increased morbidity, higher cost and length of treatment and increased zoonotic risk because of the difficulty in treating them. In this study, an individual-based model was developed to investigate the effects of movements of canine patients among ten areas (transmission points) within a veterinary teaching hospital, and the effects of these movements on transmission of antibiotic susceptible and resistant pathogens. The model simulates contamination of transmission points, healthcare workers, and patients as well as the effects of decontamination of transmission points, disinfection of healthcare workers, and antibiotic treatments of canine patients. The model was parameterized using data obtained from hospital records, information obtained by interviews with hospital staff, and the published literature. The model suggested that transmission resulting from contact with healthcare workers was common, and that certain transmission points (housing wards, diagnostics room, and the intensive care unit) presented higher risk for transmission than others (lobby and surgery). Sensitivity analyses using a range of parameter values demonstrated that the risk of acquisition of colonization by resistant pathogens decreased with shorter patient hospital stays (P<0.0001), more frequent decontamination of transmission points and disinfection of healthcare workers (P<0.0001) and better compliance of healthcare workers with hygiene practices (P<0.0001). More frequent decontamination of heavily trafficked transmission points was especially effective at reducing transmission of the model pathogen.

Show MeSH

Related in: MedlinePlus

Percentage contamination with Enterococci or ampicillin-nalidixic acid-resistant coliforms of four transmission points by time of day.The average combined contamination prevalence of the four places sampled during the validation survey: the exam rooms, the diagnostics, ICU and the housing wards, at different times the sampling was done. Each data point is the average percentage contamination in 20 samples (5 samples per location) for each time. Bars represent the standard error over these 20 samples.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4043964&req=5

pone-0098589-g006: Percentage contamination with Enterococci or ampicillin-nalidixic acid-resistant coliforms of four transmission points by time of day.The average combined contamination prevalence of the four places sampled during the validation survey: the exam rooms, the diagnostics, ICU and the housing wards, at different times the sampling was done. Each data point is the average percentage contamination in 20 samples (5 samples per location) for each time. Bars represent the standard error over these 20 samples.

Mentions: To determine the accuracy of our model predictions for the relative fractions of time that transmission points were contaminated, an environmental survey was conducted. Each of the four sampled locations (diagnostics room, exam rooms, ICU and housing wards) were frequently contaminated with Enterococcus spp: 27 to 35% of samples were positive. With respect to Amp-Nal coliforms, the diagnostics room, exam rooms, the ICU and the housing wards samples had 11.6, 6.7, 10.0 and 16.9 percent positive samples, respectively. The overall sample prevalence of Enterococcus spp. and Amp-Nal coliforms was not significantly different between locations (Enterococcus spp. contamination: P = 0.71 and coliform contamination: P = 0.44), although there were more positive samples for both types of bacteria in the housing wards, the ICU and the diagnostics room than in the exam rooms (Table 3). The prevalence of Enterococcus-positive samples was significantly higher in the daytime hours for each location but this day-night difference was not significant for Amp-Nal coliforms (Table 3 and Fig. 6).


An individual-based model of transmission of resistant bacteria in a veterinary teaching hospital.

Suthar N, Roy S, Call DR, Besser TE, Davis MA - PLoS ONE (2014)

Percentage contamination with Enterococci or ampicillin-nalidixic acid-resistant coliforms of four transmission points by time of day.The average combined contamination prevalence of the four places sampled during the validation survey: the exam rooms, the diagnostics, ICU and the housing wards, at different times the sampling was done. Each data point is the average percentage contamination in 20 samples (5 samples per location) for each time. Bars represent the standard error over these 20 samples.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4043964&req=5

pone-0098589-g006: Percentage contamination with Enterococci or ampicillin-nalidixic acid-resistant coliforms of four transmission points by time of day.The average combined contamination prevalence of the four places sampled during the validation survey: the exam rooms, the diagnostics, ICU and the housing wards, at different times the sampling was done. Each data point is the average percentage contamination in 20 samples (5 samples per location) for each time. Bars represent the standard error over these 20 samples.
Mentions: To determine the accuracy of our model predictions for the relative fractions of time that transmission points were contaminated, an environmental survey was conducted. Each of the four sampled locations (diagnostics room, exam rooms, ICU and housing wards) were frequently contaminated with Enterococcus spp: 27 to 35% of samples were positive. With respect to Amp-Nal coliforms, the diagnostics room, exam rooms, the ICU and the housing wards samples had 11.6, 6.7, 10.0 and 16.9 percent positive samples, respectively. The overall sample prevalence of Enterococcus spp. and Amp-Nal coliforms was not significantly different between locations (Enterococcus spp. contamination: P = 0.71 and coliform contamination: P = 0.44), although there were more positive samples for both types of bacteria in the housing wards, the ICU and the diagnostics room than in the exam rooms (Table 3). The prevalence of Enterococcus-positive samples was significantly higher in the daytime hours for each location but this day-night difference was not significant for Amp-Nal coliforms (Table 3 and Fig. 6).

Bottom Line: The model was parameterized using data obtained from hospital records, information obtained by interviews with hospital staff, and the published literature.The model suggested that transmission resulting from contact with healthcare workers was common, and that certain transmission points (housing wards, diagnostics room, and the intensive care unit) presented higher risk for transmission than others (lobby and surgery).Sensitivity analyses using a range of parameter values demonstrated that the risk of acquisition of colonization by resistant pathogens decreased with shorter patient hospital stays (P<0.0001), more frequent decontamination of transmission points and disinfection of healthcare workers (P<0.0001) and better compliance of healthcare workers with hygiene practices (P<0.0001).

View Article: PubMed Central - PubMed

Affiliation: Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.

ABSTRACT
Veterinary nosocomial infections caused by antibiotic resistant bacteria cause increased morbidity, higher cost and length of treatment and increased zoonotic risk because of the difficulty in treating them. In this study, an individual-based model was developed to investigate the effects of movements of canine patients among ten areas (transmission points) within a veterinary teaching hospital, and the effects of these movements on transmission of antibiotic susceptible and resistant pathogens. The model simulates contamination of transmission points, healthcare workers, and patients as well as the effects of decontamination of transmission points, disinfection of healthcare workers, and antibiotic treatments of canine patients. The model was parameterized using data obtained from hospital records, information obtained by interviews with hospital staff, and the published literature. The model suggested that transmission resulting from contact with healthcare workers was common, and that certain transmission points (housing wards, diagnostics room, and the intensive care unit) presented higher risk for transmission than others (lobby and surgery). Sensitivity analyses using a range of parameter values demonstrated that the risk of acquisition of colonization by resistant pathogens decreased with shorter patient hospital stays (P<0.0001), more frequent decontamination of transmission points and disinfection of healthcare workers (P<0.0001) and better compliance of healthcare workers with hygiene practices (P<0.0001). More frequent decontamination of heavily trafficked transmission points was especially effective at reducing transmission of the model pathogen.

Show MeSH
Related in: MedlinePlus