Limits...
An individual-based model of transmission of resistant bacteria in a veterinary teaching hospital.

Suthar N, Roy S, Call DR, Besser TE, Davis MA - PLoS ONE (2014)

Bottom Line: The model was parameterized using data obtained from hospital records, information obtained by interviews with hospital staff, and the published literature.The model suggested that transmission resulting from contact with healthcare workers was common, and that certain transmission points (housing wards, diagnostics room, and the intensive care unit) presented higher risk for transmission than others (lobby and surgery).Sensitivity analyses using a range of parameter values demonstrated that the risk of acquisition of colonization by resistant pathogens decreased with shorter patient hospital stays (P<0.0001), more frequent decontamination of transmission points and disinfection of healthcare workers (P<0.0001) and better compliance of healthcare workers with hygiene practices (P<0.0001).

View Article: PubMed Central - PubMed

Affiliation: Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.

ABSTRACT
Veterinary nosocomial infections caused by antibiotic resistant bacteria cause increased morbidity, higher cost and length of treatment and increased zoonotic risk because of the difficulty in treating them. In this study, an individual-based model was developed to investigate the effects of movements of canine patients among ten areas (transmission points) within a veterinary teaching hospital, and the effects of these movements on transmission of antibiotic susceptible and resistant pathogens. The model simulates contamination of transmission points, healthcare workers, and patients as well as the effects of decontamination of transmission points, disinfection of healthcare workers, and antibiotic treatments of canine patients. The model was parameterized using data obtained from hospital records, information obtained by interviews with hospital staff, and the published literature. The model suggested that transmission resulting from contact with healthcare workers was common, and that certain transmission points (housing wards, diagnostics room, and the intensive care unit) presented higher risk for transmission than others (lobby and surgery). Sensitivity analyses using a range of parameter values demonstrated that the risk of acquisition of colonization by resistant pathogens decreased with shorter patient hospital stays (P<0.0001), more frequent decontamination of transmission points and disinfection of healthcare workers (P<0.0001) and better compliance of healthcare workers with hygiene practices (P<0.0001). More frequent decontamination of heavily trafficked transmission points was especially effective at reducing transmission of the model pathogen.

Show MeSH

Related in: MedlinePlus

Patient movement inside the hospital.Patients seen for regular exams (yellow) are limited to the lobby, diagnostics and radiology. Patients seen for non-surgical problems (vertical lines) may be housed in wards or in the ICU and are taken outside for walks. Patients coming to WSU VTH for surgery (horizontal lines) have additional movements to the induction, surgery and recovery rooms.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4043964&req=5

pone-0098589-g001: Patient movement inside the hospital.Patients seen for regular exams (yellow) are limited to the lobby, diagnostics and radiology. Patients seen for non-surgical problems (vertical lines) may be housed in wards or in the ICU and are taken outside for walks. Patients coming to WSU VTH for surgery (horizontal lines) have additional movements to the induction, surgery and recovery rooms.

Mentions: Based on the category assigned in the model, the patients will have different average lengths of stay (surgery and non-surgical disease, 5 days; regular check-up, 0.5 day) and follow different routes in the hospital (Fig. 1). We considered ten areas in the hospital that canine patients may visit during their hospital stay as potential transmission points. These included the lobby, the exam rooms, the diagnostics room (diagnosis of patients is done here and in rare cases patients stay overnight), radiology, the housing wards (a large area with kennels for hospitalization), the outside dog-walking area, the ICU, the induction room (patients are prepared for surgery here), the surgery rooms, and the recovery room (patients have a transition stay here after surgery before being moved back to housing or ICU). At this hospital most elective surgeries are performed during the morning hours and for the most part patient movement during the night is limited to housing, ICU and diagnostics areas, therefore those movement constraints are included in the model.


An individual-based model of transmission of resistant bacteria in a veterinary teaching hospital.

Suthar N, Roy S, Call DR, Besser TE, Davis MA - PLoS ONE (2014)

Patient movement inside the hospital.Patients seen for regular exams (yellow) are limited to the lobby, diagnostics and radiology. Patients seen for non-surgical problems (vertical lines) may be housed in wards or in the ICU and are taken outside for walks. Patients coming to WSU VTH for surgery (horizontal lines) have additional movements to the induction, surgery and recovery rooms.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4043964&req=5

pone-0098589-g001: Patient movement inside the hospital.Patients seen for regular exams (yellow) are limited to the lobby, diagnostics and radiology. Patients seen for non-surgical problems (vertical lines) may be housed in wards or in the ICU and are taken outside for walks. Patients coming to WSU VTH for surgery (horizontal lines) have additional movements to the induction, surgery and recovery rooms.
Mentions: Based on the category assigned in the model, the patients will have different average lengths of stay (surgery and non-surgical disease, 5 days; regular check-up, 0.5 day) and follow different routes in the hospital (Fig. 1). We considered ten areas in the hospital that canine patients may visit during their hospital stay as potential transmission points. These included the lobby, the exam rooms, the diagnostics room (diagnosis of patients is done here and in rare cases patients stay overnight), radiology, the housing wards (a large area with kennels for hospitalization), the outside dog-walking area, the ICU, the induction room (patients are prepared for surgery here), the surgery rooms, and the recovery room (patients have a transition stay here after surgery before being moved back to housing or ICU). At this hospital most elective surgeries are performed during the morning hours and for the most part patient movement during the night is limited to housing, ICU and diagnostics areas, therefore those movement constraints are included in the model.

Bottom Line: The model was parameterized using data obtained from hospital records, information obtained by interviews with hospital staff, and the published literature.The model suggested that transmission resulting from contact with healthcare workers was common, and that certain transmission points (housing wards, diagnostics room, and the intensive care unit) presented higher risk for transmission than others (lobby and surgery).Sensitivity analyses using a range of parameter values demonstrated that the risk of acquisition of colonization by resistant pathogens decreased with shorter patient hospital stays (P<0.0001), more frequent decontamination of transmission points and disinfection of healthcare workers (P<0.0001) and better compliance of healthcare workers with hygiene practices (P<0.0001).

View Article: PubMed Central - PubMed

Affiliation: Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.

ABSTRACT
Veterinary nosocomial infections caused by antibiotic resistant bacteria cause increased morbidity, higher cost and length of treatment and increased zoonotic risk because of the difficulty in treating them. In this study, an individual-based model was developed to investigate the effects of movements of canine patients among ten areas (transmission points) within a veterinary teaching hospital, and the effects of these movements on transmission of antibiotic susceptible and resistant pathogens. The model simulates contamination of transmission points, healthcare workers, and patients as well as the effects of decontamination of transmission points, disinfection of healthcare workers, and antibiotic treatments of canine patients. The model was parameterized using data obtained from hospital records, information obtained by interviews with hospital staff, and the published literature. The model suggested that transmission resulting from contact with healthcare workers was common, and that certain transmission points (housing wards, diagnostics room, and the intensive care unit) presented higher risk for transmission than others (lobby and surgery). Sensitivity analyses using a range of parameter values demonstrated that the risk of acquisition of colonization by resistant pathogens decreased with shorter patient hospital stays (P<0.0001), more frequent decontamination of transmission points and disinfection of healthcare workers (P<0.0001) and better compliance of healthcare workers with hygiene practices (P<0.0001). More frequent decontamination of heavily trafficked transmission points was especially effective at reducing transmission of the model pathogen.

Show MeSH
Related in: MedlinePlus