Limits...
CMZ reversed chronic ethanol-induced disturbance of PPAR-α possibly by suppressing oxidative stress and PGC-1α acetylation, and activating the MAPK and GSK3β pathway.

Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ - PLoS ONE (2014)

Bottom Line: Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment.CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α.These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL.

View Article: PubMed Central - PubMed

Affiliation: Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China.

ABSTRACT

Background: Cytochrome P4502E1 (CYP2E1) has been suggested to play critical roles in the pathogenesis of alcoholic fatty liver (AFL), but the underlying mechanisms remains unclear. The current study was designed to evaluate whether CYP2E1 suppression by chlormethiazole (CMZ) could suppress AFL in mice, and to explore the underlying mechanisms.

Methods: Mice were treated with or without CMZ (50 mg/kg bw, i.p.) and subjected to liquid diet with or without ethanol (5%, w/v) for 4 weeks. Biochemical parameters were measured using commercial kits. The protein and mRNA levels were detected by western blot and qPCR, respectively. Histopathology and immunohistochemical assay were performed with routine methods.

Results: CYP2E1 inhibition by CMZ completely blocked AFL in mice, shown as the decline of the hepatic and serum triglyceride levels, and the fewer fat droplets in the liver sections. Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment. CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α. Furthermore, CMZ co-treatment led to the activation of AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), and PI3K/Akt/GSK3β pathway. However, chronic ethanol-induced decline of acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) protein levels was partially restored by CMZ, while the activation of autophagy appeared to be suppressed by CMZ.

Conclusion: These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL.

Show MeSH

Related in: MedlinePlus

CMZ co-treatment led to the increased phosphoryaliton and activation of Akt.Total protein samples were prepared using RIPA buffer, and protein levels of phospho-Aktser473, phospho-Aktthr308, and the total Akt were detected by western blot. (a) Representative western blot band; (b) Quantitative data analyses. Data were presented as mean ± SD from at least 3 independent experiments, and expressed as the percentage of the control. **P<0.01, compared with control group; #P<0.05, ##P<0.01, compared with ethanol group.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4043914&req=5

pone-0098658-g007: CMZ co-treatment led to the increased phosphoryaliton and activation of Akt.Total protein samples were prepared using RIPA buffer, and protein levels of phospho-Aktser473, phospho-Aktthr308, and the total Akt were detected by western blot. (a) Representative western blot band; (b) Quantitative data analyses. Data were presented as mean ± SD from at least 3 independent experiments, and expressed as the percentage of the control. **P<0.01, compared with control group; #P<0.05, ##P<0.01, compared with ethanol group.

Mentions: The changes of Akt were parallel well with that of GSK-3β. As shown in Fig.7, the protein levels of total Akt kept unchanged in the liver of different group mice. However, compared with those of control group mice, the protein levels of phospho-AktThr308 and phospho-AktSer473 were decreased by 49.73% and 15.50%, respectively. Compared with those of ethanol group mice, the protein levels of phospho-AktThr308 and phospho-AktSer473 in the liver of CMZ/ethanol group mice were increased to 3.74 fold and 1.67 fold, respectively. As shown in the Fig.8, the protein level of the catalytic subunit of PI3K (p110, 110 kD) was not significantly affected by ethanol and CMZ, while the protein levels of the regulatory subunits of PI3K, p85 (85 kD), p55 (55 kD) and p50 (50 kD), were differently altered in the liver of ethanol group mice. The p85 protein level was decreased by 33.45%, while the p55 was undetectable in the livers of ethanol group mice. Compared with those of ethanol group mice, the p85 protein level in the liver of CMZ/ethanol group mice was increased by 19.26%, while the protein level of p50 was increased by 25.12%. These data suggested that the activation of Akt might be attributed to the up-regulation of the protein levels of the PI3K regulatory subunits, p50.


CMZ reversed chronic ethanol-induced disturbance of PPAR-α possibly by suppressing oxidative stress and PGC-1α acetylation, and activating the MAPK and GSK3β pathway.

Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ - PLoS ONE (2014)

CMZ co-treatment led to the increased phosphoryaliton and activation of Akt.Total protein samples were prepared using RIPA buffer, and protein levels of phospho-Aktser473, phospho-Aktthr308, and the total Akt were detected by western blot. (a) Representative western blot band; (b) Quantitative data analyses. Data were presented as mean ± SD from at least 3 independent experiments, and expressed as the percentage of the control. **P<0.01, compared with control group; #P<0.05, ##P<0.01, compared with ethanol group.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4043914&req=5

pone-0098658-g007: CMZ co-treatment led to the increased phosphoryaliton and activation of Akt.Total protein samples were prepared using RIPA buffer, and protein levels of phospho-Aktser473, phospho-Aktthr308, and the total Akt were detected by western blot. (a) Representative western blot band; (b) Quantitative data analyses. Data were presented as mean ± SD from at least 3 independent experiments, and expressed as the percentage of the control. **P<0.01, compared with control group; #P<0.05, ##P<0.01, compared with ethanol group.
Mentions: The changes of Akt were parallel well with that of GSK-3β. As shown in Fig.7, the protein levels of total Akt kept unchanged in the liver of different group mice. However, compared with those of control group mice, the protein levels of phospho-AktThr308 and phospho-AktSer473 were decreased by 49.73% and 15.50%, respectively. Compared with those of ethanol group mice, the protein levels of phospho-AktThr308 and phospho-AktSer473 in the liver of CMZ/ethanol group mice were increased to 3.74 fold and 1.67 fold, respectively. As shown in the Fig.8, the protein level of the catalytic subunit of PI3K (p110, 110 kD) was not significantly affected by ethanol and CMZ, while the protein levels of the regulatory subunits of PI3K, p85 (85 kD), p55 (55 kD) and p50 (50 kD), were differently altered in the liver of ethanol group mice. The p85 protein level was decreased by 33.45%, while the p55 was undetectable in the livers of ethanol group mice. Compared with those of ethanol group mice, the p85 protein level in the liver of CMZ/ethanol group mice was increased by 19.26%, while the protein level of p50 was increased by 25.12%. These data suggested that the activation of Akt might be attributed to the up-regulation of the protein levels of the PI3K regulatory subunits, p50.

Bottom Line: Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment.CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α.These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL.

View Article: PubMed Central - PubMed

Affiliation: Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China.

ABSTRACT

Background: Cytochrome P4502E1 (CYP2E1) has been suggested to play critical roles in the pathogenesis of alcoholic fatty liver (AFL), but the underlying mechanisms remains unclear. The current study was designed to evaluate whether CYP2E1 suppression by chlormethiazole (CMZ) could suppress AFL in mice, and to explore the underlying mechanisms.

Methods: Mice were treated with or without CMZ (50 mg/kg bw, i.p.) and subjected to liquid diet with or without ethanol (5%, w/v) for 4 weeks. Biochemical parameters were measured using commercial kits. The protein and mRNA levels were detected by western blot and qPCR, respectively. Histopathology and immunohistochemical assay were performed with routine methods.

Results: CYP2E1 inhibition by CMZ completely blocked AFL in mice, shown as the decline of the hepatic and serum triglyceride levels, and the fewer fat droplets in the liver sections. Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment. CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α. Furthermore, CMZ co-treatment led to the activation of AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), and PI3K/Akt/GSK3β pathway. However, chronic ethanol-induced decline of acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) protein levels was partially restored by CMZ, while the activation of autophagy appeared to be suppressed by CMZ.

Conclusion: These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL.

Show MeSH
Related in: MedlinePlus