Limits...
Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control.

Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA - Int J Nanomedicine (2014)

Bottom Line: The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest.Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively.This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.

View Article: PubMed Central - PubMed

Affiliation: Institute of Bioinformatics and Biotechnology, University of Pune, India.

ABSTRACT

Background: Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica.

Materials and methods: Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy.

Results: PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt-ended AgAuNPs. These NPs also showed antimicrobial and antibiofilm activity against E. coli, A. baumannii, S. aureus, and a mixed culture of A. baumannii and S. aureus. AgNPs inhibited biofilm in the range of 96%-99% and AgAuNPs from 93% to 98% in single-culture biofilms. AuNPs also showed biofilm inhibition, with the highest of 98% in S. aureus. AgNPs also showed good biofilm disruption, with the highest of 88% in A. baumannii.

Conclusion: This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.

Show MeSH

Related in: MedlinePlus

Images of Acinetobacter baumannii biofilm formation and inhibition using fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Upper panel, fluorescence microscopy; middle panel, SEM; lower panel, AFM. (A,D,G) Biofilm formation; (B,E,H) biofilm inhibition with AgNPs; (C,F,I) biofilm inhibition with AgAuNPs.Abbreviations: AgNPs, silver nanoparticles; AgAuNPs, bimetallic NPs.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4043712&req=5

f8-ijn-9-2635: Images of Acinetobacter baumannii biofilm formation and inhibition using fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Upper panel, fluorescence microscopy; middle panel, SEM; lower panel, AFM. (A,D,G) Biofilm formation; (B,E,H) biofilm inhibition with AgNPs; (C,F,I) biofilm inhibition with AgAuNPs.Abbreviations: AgNPs, silver nanoparticles; AgAuNPs, bimetallic NPs.

Mentions: The cells were seen in aggregates in the absence of NPs (Figure 8A) in images obtained under fluorescence microscopy at a resolution of 40×. In the presence of AgNPs, the biofilm as well as cells were absent (Figure 8B), whereas in Figure 8C, although biofilm was absent in the presence of AgAuNPs, the cells were seen to be isolated. In SEM images, A. baumannii cells and the biofilm formed, seen in Figure 8D, were intact. Due to the presence of intact biofilm, the cells were present in colonies, and no change in the morphology was observed. Coincubation of the bacterial cells with AgNPs led to a change in the cell morphology and disrupted the biofilm of A. baumannii (Figure 8E), whereas cells were seen to be lysed in the presence of AgAuNPs (Figure 8F).


Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control.

Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA - Int J Nanomedicine (2014)

Images of Acinetobacter baumannii biofilm formation and inhibition using fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Upper panel, fluorescence microscopy; middle panel, SEM; lower panel, AFM. (A,D,G) Biofilm formation; (B,E,H) biofilm inhibition with AgNPs; (C,F,I) biofilm inhibition with AgAuNPs.Abbreviations: AgNPs, silver nanoparticles; AgAuNPs, bimetallic NPs.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4043712&req=5

f8-ijn-9-2635: Images of Acinetobacter baumannii biofilm formation and inhibition using fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Upper panel, fluorescence microscopy; middle panel, SEM; lower panel, AFM. (A,D,G) Biofilm formation; (B,E,H) biofilm inhibition with AgNPs; (C,F,I) biofilm inhibition with AgAuNPs.Abbreviations: AgNPs, silver nanoparticles; AgAuNPs, bimetallic NPs.
Mentions: The cells were seen in aggregates in the absence of NPs (Figure 8A) in images obtained under fluorescence microscopy at a resolution of 40×. In the presence of AgNPs, the biofilm as well as cells were absent (Figure 8B), whereas in Figure 8C, although biofilm was absent in the presence of AgAuNPs, the cells were seen to be isolated. In SEM images, A. baumannii cells and the biofilm formed, seen in Figure 8D, were intact. Due to the presence of intact biofilm, the cells were present in colonies, and no change in the morphology was observed. Coincubation of the bacterial cells with AgNPs led to a change in the cell morphology and disrupted the biofilm of A. baumannii (Figure 8E), whereas cells were seen to be lysed in the presence of AgAuNPs (Figure 8F).

Bottom Line: The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest.Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively.This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.

View Article: PubMed Central - PubMed

Affiliation: Institute of Bioinformatics and Biotechnology, University of Pune, India.

ABSTRACT

Background: Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica.

Materials and methods: Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy.

Results: PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt-ended AgAuNPs. These NPs also showed antimicrobial and antibiofilm activity against E. coli, A. baumannii, S. aureus, and a mixed culture of A. baumannii and S. aureus. AgNPs inhibited biofilm in the range of 96%-99% and AgAuNPs from 93% to 98% in single-culture biofilms. AuNPs also showed biofilm inhibition, with the highest of 98% in S. aureus. AgNPs also showed good biofilm disruption, with the highest of 88% in A. baumannii.

Conclusion: This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.

Show MeSH
Related in: MedlinePlus