Limits...
Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control.

Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA - Int J Nanomedicine (2014)

Bottom Line: The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest.Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively.This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.

View Article: PubMed Central - PubMed

Affiliation: Institute of Bioinformatics and Biotechnology, University of Pune, India.

ABSTRACT

Background: Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica.

Materials and methods: Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy.

Results: PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt-ended AgAuNPs. These NPs also showed antimicrobial and antibiofilm activity against E. coli, A. baumannii, S. aureus, and a mixed culture of A. baumannii and S. aureus. AgNPs inhibited biofilm in the range of 96%-99% and AgAuNPs from 93% to 98% in single-culture biofilms. AuNPs also showed biofilm inhibition, with the highest of 98% in S. aureus. AgNPs also showed good biofilm disruption, with the highest of 88% in A. baumannii.

Conclusion: This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.

Show MeSH

Related in: MedlinePlus

Fourier-transform infrared absorptive spectra before and after bioreduction of dried PZRE. (A) PZRE; (B) AgNPs; (C) AuNPs; (D) AgAuNPs.Abbreviations: PZRE, Plumbago zeylanica root extract; AgNPs, silver nanoparticles; AuNPs, gold NPs; AgAuNPs, bimetallic NPs.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4043712&req=5

f3-ijn-9-2635: Fourier-transform infrared absorptive spectra before and after bioreduction of dried PZRE. (A) PZRE; (B) AgNPs; (C) AuNPs; (D) AgAuNPs.Abbreviations: PZRE, Plumbago zeylanica root extract; AgNPs, silver nanoparticles; AuNPs, gold NPs; AgAuNPs, bimetallic NPs.

Mentions: The plant extracts before and after bioreduction were subjected to FTIR analysis. The sample of plant extract before bioreduction showed a peak at 3,300 cm−1, signifying the presence of hydroxyl groups (Figure 3). In samples after reduction, a peak at 3,300 cm−1 was not observed and the free hydroxyls were observed at 3,390 cm−1, indicating that hydroxyl groups present in polyphenols from P. zeylanica were responsible for the bioreduction of the AgNO3 and HAuCl4 solutions to form respective NPs. A significant peak at 1,741 cm−1of the symmetric stretch of C=O indicated the presence of aldehydes, ketones, esters, or carboxylic acids.


Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control.

Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA - Int J Nanomedicine (2014)

Fourier-transform infrared absorptive spectra before and after bioreduction of dried PZRE. (A) PZRE; (B) AgNPs; (C) AuNPs; (D) AgAuNPs.Abbreviations: PZRE, Plumbago zeylanica root extract; AgNPs, silver nanoparticles; AuNPs, gold NPs; AgAuNPs, bimetallic NPs.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4043712&req=5

f3-ijn-9-2635: Fourier-transform infrared absorptive spectra before and after bioreduction of dried PZRE. (A) PZRE; (B) AgNPs; (C) AuNPs; (D) AgAuNPs.Abbreviations: PZRE, Plumbago zeylanica root extract; AgNPs, silver nanoparticles; AuNPs, gold NPs; AgAuNPs, bimetallic NPs.
Mentions: The plant extracts before and after bioreduction were subjected to FTIR analysis. The sample of plant extract before bioreduction showed a peak at 3,300 cm−1, signifying the presence of hydroxyl groups (Figure 3). In samples after reduction, a peak at 3,300 cm−1 was not observed and the free hydroxyls were observed at 3,390 cm−1, indicating that hydroxyl groups present in polyphenols from P. zeylanica were responsible for the bioreduction of the AgNO3 and HAuCl4 solutions to form respective NPs. A significant peak at 1,741 cm−1of the symmetric stretch of C=O indicated the presence of aldehydes, ketones, esters, or carboxylic acids.

Bottom Line: The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest.Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively.This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.

View Article: PubMed Central - PubMed

Affiliation: Institute of Bioinformatics and Biotechnology, University of Pune, India.

ABSTRACT

Background: Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica.

Materials and methods: Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy.

Results: PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt-ended AgAuNPs. These NPs also showed antimicrobial and antibiofilm activity against E. coli, A. baumannii, S. aureus, and a mixed culture of A. baumannii and S. aureus. AgNPs inhibited biofilm in the range of 96%-99% and AgAuNPs from 93% to 98% in single-culture biofilms. AuNPs also showed biofilm inhibition, with the highest of 98% in S. aureus. AgNPs also showed good biofilm disruption, with the highest of 88% in A. baumannii.

Conclusion: This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.

Show MeSH
Related in: MedlinePlus