Limits...
Longitudinal monitoring of cardiac dysfunction with MRI in a mouse model of obesity and type 2 diabetes

View Article: PubMed Central - HTML

AUTOMATICALLY GENERATED EXCERPT
Please rate it.

Male C57BL6R mice were subjected to a high fat high sucrose diet (HFHSD, N = 10) or a regular show diet (RD, N = 10) during 4 months in order to induce obesity and insulin resistance... Mice fed with HFHSD became significantly obese compared to mice fed with RD (47.3 ± 0.7 g vs. 32.9 ± 0.1 g)... After 4 months of HFHSD, obese mice developed cardiac dysfunctions... Indeed, they presented a significant decrease in end diastolic volume (EDV) compared to control mice (66.9 ± 3.7 mL vs. 85.8 ± 3.0 mL, p = 0.001), stroke volume (SV) (47.4 ± 2.8 mL vs. 58.5 ± 2.8 mL p = 0.01)... A significant decrease in cardiac perfusion (7.0 ± 0.7 mL/g/min vs. 9.1 ± 0.6 mL/g/min, p = 0.03) was also observed (Figure 1)... These anomalies have been developed subsequently to a significant triglycerides accumulation in heart (1.1 ± 0.20% vs. 0.7 ± 0.08%, p = 0.02) and liver (5.0 ± 1.3x% vs. 1.8 ± 0.09%, p = 0.002) which appears earlier in the 1st month (Figure 2)... Furthermore, cardiac perfusion was significantly associated to myocardial (r = -0.5, p = 0.04) and hepatic (r = -0.64, p = 0.008) triglyceride content at 4 months although these two ectopic fats are not correlated together... Interestingly, cardiac perfusion at 4 months was also associated to hepatic triglyceride content at 3 months (r = -0.56, p = 0.03), while no change in cardiac perfusion was still observed... Moreover, increased hepatic triglyceride content was correlated to myocardial function decreases at 4 months: EDV (r = -0.65, p = 0.008), SV (r = -0.64, p = 0.01)... These preliminary data established the chronological order of anomalies appearance associated to diet-induced obesity and insulin resistance in a 4 month longitudinal assessment... Hepatic triglyceride content seems to be a relevant predictive factor of cardiac anomalies... This experimental protocol might be useful to assess the effect of anti-diabetic drugs on cardiac function.

No MeSH data available.


© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4043229&req=5

Mentions: Mice fed with HFHSD became significantly obese compared to mice fed with RD (47.3 ± 0.7 g vs. 32.9 ± 0.1 g). After 4 months of HFHSD, obese mice developed cardiac dysfunctions. Indeed, they presented a significant decrease in end diastolic volume (EDV) compared to control mice (66.9 ± 3.7 mL vs. 85.8 ± 3.0 mL, p = 0.001), stroke volume (SV) (47.4 ± 2.8 mL vs. 58.5 ± 2.8 mL p = 0.01). A significant decrease in cardiac perfusion (7.0 ± 0.7 mL/g/min vs. 9.1 ± 0.6 mL/g/min, p = 0.03) was also observed (Figure 1). These anomalies have been developed subsequently to a significant triglycerides accumulation in heart (1.1 ± 0.20% vs. 0.7 ± 0.08%, p = 0.02) and liver (5.0 ± 1.3x% vs. 1.8 ± 0.09%, p = 0.002) which appears earlier in the 1st month (Figure 2). Furthermore, cardiac perfusion was significantly associated to myocardial (r = -0.5, p = 0.04) and hepatic (r = -0.64, p = 0.008) triglyceride content at 4 months although these two ectopic fats are not correlated together. Interestingly, cardiac perfusion at 4 months was also associated to hepatic triglyceride content at 3 months (r = -0.56, p = 0.03), while no change in cardiac perfusion was still observed. Moreover, increased hepatic triglyceride content was correlated to myocardial function decreases at 4 months: EDV (r = -0.65, p = 0.008), SV (r = -0.64, p = 0.01).


Longitudinal monitoring of cardiac dysfunction with MRI in a mouse model of obesity and type 2 diabetes
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4043229&req=5

Mentions: Mice fed with HFHSD became significantly obese compared to mice fed with RD (47.3 ± 0.7 g vs. 32.9 ± 0.1 g). After 4 months of HFHSD, obese mice developed cardiac dysfunctions. Indeed, they presented a significant decrease in end diastolic volume (EDV) compared to control mice (66.9 ± 3.7 mL vs. 85.8 ± 3.0 mL, p = 0.001), stroke volume (SV) (47.4 ± 2.8 mL vs. 58.5 ± 2.8 mL p = 0.01). A significant decrease in cardiac perfusion (7.0 ± 0.7 mL/g/min vs. 9.1 ± 0.6 mL/g/min, p = 0.03) was also observed (Figure 1). These anomalies have been developed subsequently to a significant triglycerides accumulation in heart (1.1 ± 0.20% vs. 0.7 ± 0.08%, p = 0.02) and liver (5.0 ± 1.3x% vs. 1.8 ± 0.09%, p = 0.002) which appears earlier in the 1st month (Figure 2). Furthermore, cardiac perfusion was significantly associated to myocardial (r = -0.5, p = 0.04) and hepatic (r = -0.64, p = 0.008) triglyceride content at 4 months although these two ectopic fats are not correlated together. Interestingly, cardiac perfusion at 4 months was also associated to hepatic triglyceride content at 3 months (r = -0.56, p = 0.03), while no change in cardiac perfusion was still observed. Moreover, increased hepatic triglyceride content was correlated to myocardial function decreases at 4 months: EDV (r = -0.65, p = 0.008), SV (r = -0.64, p = 0.01).

View Article: PubMed Central - HTML

AUTOMATICALLY GENERATED EXCERPT
Please rate it.

Male C57BL6R mice were subjected to a high fat high sucrose diet (HFHSD, N = 10) or a regular show diet (RD, N = 10) during 4 months in order to induce obesity and insulin resistance... Mice fed with HFHSD became significantly obese compared to mice fed with RD (47.3 ± 0.7 g vs. 32.9 ± 0.1 g)... After 4 months of HFHSD, obese mice developed cardiac dysfunctions... Indeed, they presented a significant decrease in end diastolic volume (EDV) compared to control mice (66.9 ± 3.7 mL vs. 85.8 ± 3.0 mL, p = 0.001), stroke volume (SV) (47.4 ± 2.8 mL vs. 58.5 ± 2.8 mL p = 0.01)... A significant decrease in cardiac perfusion (7.0 ± 0.7 mL/g/min vs. 9.1 ± 0.6 mL/g/min, p = 0.03) was also observed (Figure 1)... These anomalies have been developed subsequently to a significant triglycerides accumulation in heart (1.1 ± 0.20% vs. 0.7 ± 0.08%, p = 0.02) and liver (5.0 ± 1.3x% vs. 1.8 ± 0.09%, p = 0.002) which appears earlier in the 1st month (Figure 2)... Furthermore, cardiac perfusion was significantly associated to myocardial (r = -0.5, p = 0.04) and hepatic (r = -0.64, p = 0.008) triglyceride content at 4 months although these two ectopic fats are not correlated together... Interestingly, cardiac perfusion at 4 months was also associated to hepatic triglyceride content at 3 months (r = -0.56, p = 0.03), while no change in cardiac perfusion was still observed... Moreover, increased hepatic triglyceride content was correlated to myocardial function decreases at 4 months: EDV (r = -0.65, p = 0.008), SV (r = -0.64, p = 0.01)... These preliminary data established the chronological order of anomalies appearance associated to diet-induced obesity and insulin resistance in a 4 month longitudinal assessment... Hepatic triglyceride content seems to be a relevant predictive factor of cardiac anomalies... This experimental protocol might be useful to assess the effect of anti-diabetic drugs on cardiac function.

No MeSH data available.