Limits...
Evaluation of bread crumbs as a potential carbon source for the growth of thraustochytrid species for oil and omega-3 production.

Thyagarajan T, Puri M, Vongsvivut J, Barrow CJ - Nutrients (2014)

Bottom Line: Static fermentation with 0.5% and 1% breadcrumbs resulted in 2.5 and 4.7 g/L of biomass, and 42.4 and 33.6 mg/g of saturated fatty acids, respectively.Scanning electron microscopic (SEM) studies confirmed the growth of both strains on breadcrumbs.The total lipid yield for static fermentation with bread crumbs was marginally lower than that of fermentation with glucose media, while the yield of unsaturated fatty acids was considerably lower, indicating that static fermentation may be more appropriate for the production of biodiesel than for the production of omega-3 rich oils in these strains.

View Article: PubMed Central - PubMed

Affiliation: Centre for Chemistry and Biotechnology, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia. tthyagar@deakin.edu.au.

ABSTRACT
The utilization of food waste by microorganisms to produce omega-3 fatty acids or biofuel is a potentially low cost method with positive environmental benefits. In the present study, the marine microorganisms Thraustochytrium sp. AH-2 and Schizochytrium sp. SR21 were used to evaluate the potential of breadcrumbs as an alternate carbon source for the production of lipids under static fermentation conditions. For the Thraustochytrium sp. AH-2, submerged liquid fermentation with 3% glucose produced 4.3 g/L of biomass and 44.16 mg/g of saturated fatty acids after seven days. Static fermentation with 0.5% and 1% breadcrumbs resulted in 2.5 and 4.7 g/L of biomass, and 42.4 and 33.6 mg/g of saturated fatty acids, respectively. Scanning electron microscopic (SEM) studies confirmed the growth of both strains on breadcrumbs. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy for both strains were consistent with the utilization of breadcrumbs for the production of unsaturated lipids, albeit at relatively low levels. The total lipid yield for static fermentation with bread crumbs was marginally lower than that of fermentation with glucose media, while the yield of unsaturated fatty acids was considerably lower, indicating that static fermentation may be more appropriate for the production of biodiesel than for the production of omega-3 rich oils in these strains.

Show MeSH

Related in: MedlinePlus

ATR-FTIR spectra of: (a) Thraustochytrium sp. AH-2; and (b) Schizochytrium sp. SR21. Black line—submerged fermentation; Blue line—unfermented breadcrumbs; Red line—static fermentation with breadcrumbs.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4042580&req=5

nutrients-06-02104-f003: ATR-FTIR spectra of: (a) Thraustochytrium sp. AH-2; and (b) Schizochytrium sp. SR21. Black line—submerged fermentation; Blue line—unfermented breadcrumbs; Red line—static fermentation with breadcrumbs.

Mentions: ATR-FTIR spectroscopic measurement of Schizochytrium sp. SR21 was performed to confirm the production of unsaturated fatty acids when BC was used as an alternative carbon source, in comparison to the submerged liquid fermentation with glucose of the same strain. Figure 3 shows the comparison of the ATR-FTIR spectral features of the raw unfermented BC, the static fermented 1% BC and glucose fermented cells. In particular, the olefinic C=CH stretching vibration found at ~3014 cm−1 is commonly known as a representative band for unsaturated fatty acids [28,29]. This band is clearly observed in the freeze-dried cells that were grown in 1% concentration of BC under static fermentation and with glucose, suggesting that observable amounts of unsaturated fatty acids were produced in the cells grown by both fermentation methods. The triplet bands found in the range of 3000–2800 cm−1, on the other hand, are attributed to C-H stretches of lipids and proteins [29]. At the low wavenumber region, the strong bands centered at 1650 and 1545 cm−1, known as amide I and II bands, respectively, occurred due to the protein moieties in the BC and the cells. The sharp band at 1725 cm−1, on the other hand, represents ν(C=O) stretches of ester functional groups from lipids and fatty acids, and is therefore indicative of total lipids produced by the cells [28,29,30]. According to the intensities of this band, fermentation with glucose led to a substantially higher amount of total lipids produced in the microorganisms. However, the ratios of unsaturated fatty acids per total lipids (i.e., I3014/I1725) were found to be comparable between both fermentation approaches, suggesting that similar yields of unsaturated fatty acid can be achieved using BC as a carbon source under static fermentation of Schizochytrium sp. SR21. Therefore, growth of these strains on BC is potentially useful both for the utilization of food waste and the production of lipid.


Evaluation of bread crumbs as a potential carbon source for the growth of thraustochytrid species for oil and omega-3 production.

Thyagarajan T, Puri M, Vongsvivut J, Barrow CJ - Nutrients (2014)

ATR-FTIR spectra of: (a) Thraustochytrium sp. AH-2; and (b) Schizochytrium sp. SR21. Black line—submerged fermentation; Blue line—unfermented breadcrumbs; Red line—static fermentation with breadcrumbs.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4042580&req=5

nutrients-06-02104-f003: ATR-FTIR spectra of: (a) Thraustochytrium sp. AH-2; and (b) Schizochytrium sp. SR21. Black line—submerged fermentation; Blue line—unfermented breadcrumbs; Red line—static fermentation with breadcrumbs.
Mentions: ATR-FTIR spectroscopic measurement of Schizochytrium sp. SR21 was performed to confirm the production of unsaturated fatty acids when BC was used as an alternative carbon source, in comparison to the submerged liquid fermentation with glucose of the same strain. Figure 3 shows the comparison of the ATR-FTIR spectral features of the raw unfermented BC, the static fermented 1% BC and glucose fermented cells. In particular, the olefinic C=CH stretching vibration found at ~3014 cm−1 is commonly known as a representative band for unsaturated fatty acids [28,29]. This band is clearly observed in the freeze-dried cells that were grown in 1% concentration of BC under static fermentation and with glucose, suggesting that observable amounts of unsaturated fatty acids were produced in the cells grown by both fermentation methods. The triplet bands found in the range of 3000–2800 cm−1, on the other hand, are attributed to C-H stretches of lipids and proteins [29]. At the low wavenumber region, the strong bands centered at 1650 and 1545 cm−1, known as amide I and II bands, respectively, occurred due to the protein moieties in the BC and the cells. The sharp band at 1725 cm−1, on the other hand, represents ν(C=O) stretches of ester functional groups from lipids and fatty acids, and is therefore indicative of total lipids produced by the cells [28,29,30]. According to the intensities of this band, fermentation with glucose led to a substantially higher amount of total lipids produced in the microorganisms. However, the ratios of unsaturated fatty acids per total lipids (i.e., I3014/I1725) were found to be comparable between both fermentation approaches, suggesting that similar yields of unsaturated fatty acid can be achieved using BC as a carbon source under static fermentation of Schizochytrium sp. SR21. Therefore, growth of these strains on BC is potentially useful both for the utilization of food waste and the production of lipid.

Bottom Line: Static fermentation with 0.5% and 1% breadcrumbs resulted in 2.5 and 4.7 g/L of biomass, and 42.4 and 33.6 mg/g of saturated fatty acids, respectively.Scanning electron microscopic (SEM) studies confirmed the growth of both strains on breadcrumbs.The total lipid yield for static fermentation with bread crumbs was marginally lower than that of fermentation with glucose media, while the yield of unsaturated fatty acids was considerably lower, indicating that static fermentation may be more appropriate for the production of biodiesel than for the production of omega-3 rich oils in these strains.

View Article: PubMed Central - PubMed

Affiliation: Centre for Chemistry and Biotechnology, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia. tthyagar@deakin.edu.au.

ABSTRACT
The utilization of food waste by microorganisms to produce omega-3 fatty acids or biofuel is a potentially low cost method with positive environmental benefits. In the present study, the marine microorganisms Thraustochytrium sp. AH-2 and Schizochytrium sp. SR21 were used to evaluate the potential of breadcrumbs as an alternate carbon source for the production of lipids under static fermentation conditions. For the Thraustochytrium sp. AH-2, submerged liquid fermentation with 3% glucose produced 4.3 g/L of biomass and 44.16 mg/g of saturated fatty acids after seven days. Static fermentation with 0.5% and 1% breadcrumbs resulted in 2.5 and 4.7 g/L of biomass, and 42.4 and 33.6 mg/g of saturated fatty acids, respectively. Scanning electron microscopic (SEM) studies confirmed the growth of both strains on breadcrumbs. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy for both strains were consistent with the utilization of breadcrumbs for the production of unsaturated lipids, albeit at relatively low levels. The total lipid yield for static fermentation with bread crumbs was marginally lower than that of fermentation with glucose media, while the yield of unsaturated fatty acids was considerably lower, indicating that static fermentation may be more appropriate for the production of biodiesel than for the production of omega-3 rich oils in these strains.

Show MeSH
Related in: MedlinePlus