Limits...
Current concepts and future directions for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies.

Mahler M, Meroni PL, Bossuyt X, Fritzler MJ - J Immunol Res (2014)

Bottom Line: Due to the subjectivity of this diagnostic platform, automated digital reading systems have been developed during the last decade.In addition, solid phase immunoassays using well characterized antigens have gained widespread adoption in high throughput laboratories due to their ease of use and open automation.Despite all the advances in the field of ANA detection and its contribution to the diagnosis of SARD, significant challenges persist.

View Article: PubMed Central - PubMed

Affiliation: INOVA Diagnostics, Inc., 9900 Old Grove Road, San Diego, CA 92131-1638, USA.

ABSTRACT
The detection of autoantibodies that target intracellular antigens, commonly termed anti-nuclear antibodies (ANA), is a serological hallmark in the diagnosis of systemic autoimmune rheumatic diseases (SARD). Different methods are available for detection of ANA and all bearing their own advantages and limitations. Most laboratories use the indirect immunofluorescence (IIF) assay based on HEp-2 cell substrates. Due to the subjectivity of this diagnostic platform, automated digital reading systems have been developed during the last decade. In addition, solid phase immunoassays using well characterized antigens have gained widespread adoption in high throughput laboratories due to their ease of use and open automation. Despite all the advances in the field of ANA detection and its contribution to the diagnosis of SARD, significant challenges persist. This review provides a comprehensive overview of the current status on ANA testing including automated IIF reading systems and solid phase assays and suggests an approach to interpretation of results and discusses meeting the problems of assay standardization and other persistent challenges.

Show MeSH

Related in: MedlinePlus

Illustration of pretest and posttest probability. Posttest probability (predictive value) for systemic lupus erythematosus as a function of pretest probability and as a function of indirect immunofluorescence (IIF) and solid phase assay (SPA) (EliA CTD screen, Thermo Fisher) test result. Values for likelihood ratios are from Bossuyt and Fieuws [31], WBC = white blood cell.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4020446&req=5

fig1: Illustration of pretest and posttest probability. Posttest probability (predictive value) for systemic lupus erythematosus as a function of pretest probability and as a function of indirect immunofluorescence (IIF) and solid phase assay (SPA) (EliA CTD screen, Thermo Fisher) test result. Values for likelihood ratios are from Bossuyt and Fieuws [31], WBC = white blood cell.

Mentions: The LR for SLE for ANA by IIF has been estimated to be 7 for a positive test result and 0.03 for a negative test result, whereas the LR for SLE based on solid phase assays (SPA) [in this case: Fluoro enzyme immunoassay (FEIA), EliA CTD screen] has been estimated to be 24 for a positive test result and 0.27 for a negative test result [31]. Using LRs, one can calculate the posttest probability for any given pretest probability [25]. Figure 1 illustrates a graphical representation of the posttest probability (predictive value) for SLE as a function of the pretest probability for IIF as well as for SPA. Such graphical representation has been shown to be a convenient way to convey diagnostic information [26].


Current concepts and future directions for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies.

Mahler M, Meroni PL, Bossuyt X, Fritzler MJ - J Immunol Res (2014)

Illustration of pretest and posttest probability. Posttest probability (predictive value) for systemic lupus erythematosus as a function of pretest probability and as a function of indirect immunofluorescence (IIF) and solid phase assay (SPA) (EliA CTD screen, Thermo Fisher) test result. Values for likelihood ratios are from Bossuyt and Fieuws [31], WBC = white blood cell.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4020446&req=5

fig1: Illustration of pretest and posttest probability. Posttest probability (predictive value) for systemic lupus erythematosus as a function of pretest probability and as a function of indirect immunofluorescence (IIF) and solid phase assay (SPA) (EliA CTD screen, Thermo Fisher) test result. Values for likelihood ratios are from Bossuyt and Fieuws [31], WBC = white blood cell.
Mentions: The LR for SLE for ANA by IIF has been estimated to be 7 for a positive test result and 0.03 for a negative test result, whereas the LR for SLE based on solid phase assays (SPA) [in this case: Fluoro enzyme immunoassay (FEIA), EliA CTD screen] has been estimated to be 24 for a positive test result and 0.27 for a negative test result [31]. Using LRs, one can calculate the posttest probability for any given pretest probability [25]. Figure 1 illustrates a graphical representation of the posttest probability (predictive value) for SLE as a function of the pretest probability for IIF as well as for SPA. Such graphical representation has been shown to be a convenient way to convey diagnostic information [26].

Bottom Line: Due to the subjectivity of this diagnostic platform, automated digital reading systems have been developed during the last decade.In addition, solid phase immunoassays using well characterized antigens have gained widespread adoption in high throughput laboratories due to their ease of use and open automation.Despite all the advances in the field of ANA detection and its contribution to the diagnosis of SARD, significant challenges persist.

View Article: PubMed Central - PubMed

Affiliation: INOVA Diagnostics, Inc., 9900 Old Grove Road, San Diego, CA 92131-1638, USA.

ABSTRACT
The detection of autoantibodies that target intracellular antigens, commonly termed anti-nuclear antibodies (ANA), is a serological hallmark in the diagnosis of systemic autoimmune rheumatic diseases (SARD). Different methods are available for detection of ANA and all bearing their own advantages and limitations. Most laboratories use the indirect immunofluorescence (IIF) assay based on HEp-2 cell substrates. Due to the subjectivity of this diagnostic platform, automated digital reading systems have been developed during the last decade. In addition, solid phase immunoassays using well characterized antigens have gained widespread adoption in high throughput laboratories due to their ease of use and open automation. Despite all the advances in the field of ANA detection and its contribution to the diagnosis of SARD, significant challenges persist. This review provides a comprehensive overview of the current status on ANA testing including automated IIF reading systems and solid phase assays and suggests an approach to interpretation of results and discusses meeting the problems of assay standardization and other persistent challenges.

Show MeSH
Related in: MedlinePlus