Limits...
Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability.

Richter SH, Vogel AS, Ueltzhöffer K, Muzzillo C, Vogt MA, Lankisch K, Armbruster-Genç DJ, Riva MA, Fiebach CJ, Gass P, Vollmayr B - Front Behav Neurosci (2014)

Bottom Line: Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks.Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required.These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory.

View Article: PubMed Central - PubMed

Affiliation: Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany.

ABSTRACT
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved "ongoing" and cued "switch" trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the "ongoing" baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.

No MeSH data available.


Related in: MedlinePlus

Correlation between distractor resistance and the individual spontaneous switching rate. According to the predictions of the Dual State Theory, the distractor resistance and the individual spontaneous switching score were negatively correlated: The more flexible the subjects, the less resistant to distractors they were. The correlation was calculated using Spearman's rank correlation coefficient.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4017158&req=5

Figure 9: Correlation between distractor resistance and the individual spontaneous switching rate. According to the predictions of the Dual State Theory, the distractor resistance and the individual spontaneous switching score were negatively correlated: The more flexible the subjects, the less resistant to distractors they were. The correlation was calculated using Spearman's rank correlation coefficient.

Mentions: In the human paradigm, the individual spontaneous switching rate was negatively correlated with the switching costs (Armbruster et al., 2012), assuming that this rate is not merely a reflection of a perceptual bias but that it indeed reflects a behavioral tendency toward more flexible behavior. Translating the test to the mouse condition led to a similar observation: Here, correlation analyses also revealed a significant negative correlation between the ISSS and the switching costs (r = −0.480, p = 0.012; rs = −0.364, p = 0.048). Thus, the higher the ISSS and, thus, the more flexible the subject behaved in the “ambiguous” condition, the less “costly” it was for the subject to switch between the answers in non-ambiguous conditions when instructed to do so (Figure 7). According to further behavioral predictions, one should also expect a correlation between the ISSS and the error rate of the “switch” condition. Indeed, such a correlation was found with more flexible subjects making less switching errors under non-ambiguous conditions (Pearson product-moment correlation coefficient, r = −0.471, p = 0.0013; Spearman's rank correlation coefficient, rs = −0.524, p = 0.006, Figure 8), even after the exclusion of one animal with an exclusively high error rate of 44.6% in the “switch” condition (r = −0.455, p = 0.019; rs = −0.483, p = 0.013). However, no similar correlations were found between the ISSS and the ER of the “distractor switch” condition (p > 0.1). For distractor inhibition, the results were also in the expected direction, but less robust: Using Spearman's rank correlation coefficient, a trend toward a negative correlation between ISSS and distractor resistance was detected (rs = −0.342, p = 0.06, Figure 9) that could, however, not be confirmed using Pearson's product-moment correlation coefficient (r = −0.237, p = 0.144).


Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability.

Richter SH, Vogel AS, Ueltzhöffer K, Muzzillo C, Vogt MA, Lankisch K, Armbruster-Genç DJ, Riva MA, Fiebach CJ, Gass P, Vollmayr B - Front Behav Neurosci (2014)

Correlation between distractor resistance and the individual spontaneous switching rate. According to the predictions of the Dual State Theory, the distractor resistance and the individual spontaneous switching score were negatively correlated: The more flexible the subjects, the less resistant to distractors they were. The correlation was calculated using Spearman's rank correlation coefficient.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4017158&req=5

Figure 9: Correlation between distractor resistance and the individual spontaneous switching rate. According to the predictions of the Dual State Theory, the distractor resistance and the individual spontaneous switching score were negatively correlated: The more flexible the subjects, the less resistant to distractors they were. The correlation was calculated using Spearman's rank correlation coefficient.
Mentions: In the human paradigm, the individual spontaneous switching rate was negatively correlated with the switching costs (Armbruster et al., 2012), assuming that this rate is not merely a reflection of a perceptual bias but that it indeed reflects a behavioral tendency toward more flexible behavior. Translating the test to the mouse condition led to a similar observation: Here, correlation analyses also revealed a significant negative correlation between the ISSS and the switching costs (r = −0.480, p = 0.012; rs = −0.364, p = 0.048). Thus, the higher the ISSS and, thus, the more flexible the subject behaved in the “ambiguous” condition, the less “costly” it was for the subject to switch between the answers in non-ambiguous conditions when instructed to do so (Figure 7). According to further behavioral predictions, one should also expect a correlation between the ISSS and the error rate of the “switch” condition. Indeed, such a correlation was found with more flexible subjects making less switching errors under non-ambiguous conditions (Pearson product-moment correlation coefficient, r = −0.471, p = 0.0013; Spearman's rank correlation coefficient, rs = −0.524, p = 0.006, Figure 8), even after the exclusion of one animal with an exclusively high error rate of 44.6% in the “switch” condition (r = −0.455, p = 0.019; rs = −0.483, p = 0.013). However, no similar correlations were found between the ISSS and the ER of the “distractor switch” condition (p > 0.1). For distractor inhibition, the results were also in the expected direction, but less robust: Using Spearman's rank correlation coefficient, a trend toward a negative correlation between ISSS and distractor resistance was detected (rs = −0.342, p = 0.06, Figure 9) that could, however, not be confirmed using Pearson's product-moment correlation coefficient (r = −0.237, p = 0.144).

Bottom Line: Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks.Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required.These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory.

View Article: PubMed Central - PubMed

Affiliation: Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany ; Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Germany.

ABSTRACT
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved "ongoing" and cued "switch" trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the "ongoing" baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.

No MeSH data available.


Related in: MedlinePlus